Chasing the Rubicon?

Michael C. Frank
Department of Psychology, Stanford University

Thanks to Dominic Massaro, Ellen Markman, and Mark Seidenberg for helpful comments.

Please address correspondence to Michael C. Frank, Department of Psychology, Stanford University, 450 Serra Mall (Jordan Hall), Stanford, CA, 94305, tel: (650) 724-4003, email: mcfrank@stanford.edu.
Where, then, is the difference between brute and man? What is it that man can do, and of which we find no signs, no rudiments, in the whole brute world? I answer without hesitation: The one great barrier between the brute and man is language. Man speaks, and no brute has ever uttered a word. Language is our Rubicon, and no brute will dare to cross it.

– Max Müller, Lectures on the Science of Language (1861), p. 360

Introduction

What makes humans different from other animals? Müller called language our “rubicon”—the unbreakable barrier between man and beast. Modern psychologists and linguists know a lot more about language than Müller did; nevertheless, many current hypotheses are not that different than Müller’s. Contemporary theorists tend to give the rubicon a name, whether it is recursion (Hauser, Chomsky, & Fitch, 2002), symbolic thought (Deacon, 1998), reference (Bloom, 2004), or some other. These names identify the construct within language that is claimed to be unique to humans. In Hauser et al. (2002)’s influential nomenclature, this construct constitutes the “faculty of language, narrow.” In other words, the rubicon.

From this perspective, the growing number of reports about language-trained animals is important and potentially problematic. If there really is a dividing line between human beings and other animals, then what are we to make of the growing menagerie that includes Kanzi the Bonobo (Savage-Rumbaugh, 1994), Alex the Parrot (Pepperberg & Pepperberg, 2009), various dolphins (Herman, Richards, & Wolz, 1984), or the pack of dogs including Rico (Kaminski, Call, & Fischer, 2004), Bailey (Griebel & Oller, 2012), and now Chaser (Pilley & Reid, 2011)? On such a view, these cases must either be miraculous discoveries or trivial mistakes.

In the case that an analyst can declare the behavior to be “non-linguistic,” the language-
the animal and the skill of the trainer—but not a scientific discovery that constrains theories of language or human nature. On the other hand, if the analyst cannot reject the importance of the behavior, then it is a miraculous discovery and a hypothesis about the nature of language must be rejected. This second outcome is not common.

An example of the failure of this binary strategy comes from the recursion debate. Hauser et al. (2002) proposed “recursion” as their rubicon. As a response, Gentner, Fenn, Margoliash, and Nusbaum (2006) claimed to show that starlings, an unrelated species, could discriminate center-embedded strings from tail-recursive strings, a key test case for one particular formal definition of recursion. But—presuming for a moment that we accept this evidence (cf. Corballis, 2007)—what is the inference we must make? On the rubicon viewpoint, we must reject that recursion of this sort is constitutive of the human-unique portions of the language faculty. Such a rejection would be a major discovery about the nature of human language.

But the truth is likely to be both more banal and more complicated. Starlings are not particularly closely related to humans, and they certainly don’t share any common ancestors that have the same pattern learning abilities. Whatever they are doing to discriminate strings may have little to do computationally with human linguistic abilities. Even as a case of convergent evolution, the claim is quite weak: Starlings don’t show the same behavior as humans. They simply share—putatively—the cognitive ability to process strings in the same formal complexity class (cf. Perruchet & Rey, 2005). So it’s hard to see why—absent an interpretation of the behavior as rubicon-crossing—an interesting avian ability should reveal much about human language.

So why don’t we reject the rubicon? As an alternative, we could begin by acknowledging that human language is different in kind not because of a single computational feature, but because it is the sum of many smaller divergences from animal
Jackendoff, 2005). This multifactorial view is unsatisfying and under-constrained, but more likely to be true. With this context, let’s turn to Chaser, a fascinating case study that could nevertheless be more scientifically illuminating were it not quite so preoccupied with rubicon-crossing.

Chaser: Unlocking the Genius of the Dog Who Knows a Thousand Words

Chaser is a Border Collie raised by John Pilley, a retired psychology professor at Wofford College. As Pilley’s (2013b) engaging narrative describes, by the time of writing, Chaser had mastered the names of over a thousand objects. Upon hearing one of these names, Chaser could fetch the matching object from a large comparison set with high accuracy and under a variety of quite stringent testing conditions: in public, with other speakers, and in controlled setups with no opportunity for social cueing. Ample video documentation attests to this achievement. Given that Chaser’s skill is consistent with—though quantitatively great than—that of other language-trained dogs (Kaminski et al., 2004; Griebel & Oller, 2012), I personally don’t see any reason to doubt the evidence.

It’s hard to imagine anyone more well-suited to training Chaser than Pilley, who retired after a career spent teaching and studying animal learning. From very early in Chaser’s life, Pilley devoted 4–5 hours a day to training word meanings through a series of carefully-designed procedures. It’s also abundantly clear that Pilley cares deeply about Chaser. This devotion—along with Chaser’s corresponding attachment—form the motivational core that allow for such a remarkable achievement.

Of course, one potential critique of this work has to do with the quantity of training that Chaser received. In an earlier commentary on canine word learning, Bloom (2004) notes that it took the dog Rico nine years to master 200 words, while human children learn thousands or tens of thousands during that time. I am not quite sure how useful such quantitative comparisons are, going forward; this de-emphasis on quantity alone is perhaps an important
many children don’t reach until some time in their third year (Mayor & Plunkett, 2011). Is that number different in kind from the 40,000 I am told by various online tests that I know?

Aside from this question of numerical line-drawing (more rubicons to cross!), there is the question of whether these numbers reflect differences in mechanism, or merely in experience and learning rate. In human language acquisition, there is an increasing appreciation of the immense amount of language input children receive—one back-of-the-envelope calculation suggests up to a million words a month in some case, leading common words to be heard hundreds, thousands, or tens of thousands of times before they are first produced (Frank, Tenenbaum, & Gibson, 2013). And the amount of language that children hear appears strongly related to their vocabulary size and facility with language (Hart & Risley, 1995; Hoff, 2003; Weisleder & Fernald, 2013). For children, and almost certainly for dogs as well, hearing more language—ideally in supportive, clear situations—leads to learning more words. The dogs probably learn slower, but that alone isn’t evidence for much of anything about the type of learning they are doing.

In addition to learning to recognize a large number of words, Chaser showed several other behaviors of interest. First, he was able to learn by exclusion, demonstrating success in a “mutual exclusivity” experiment of the type commonly used in studying word learning by human children (e.g. Markman & Wachtel, 1988; Bion, Borovsky, & Fernald, 2013). Second, he was able to master taxonomic categories for objects, responding correctly to “toy,” “ball,” and “frisbee” as category labels that covered several objects that also had their own names. Finally, and perhaps most impressively, Chaser learned to respond appropriately to multi-word commands, distinguishing “paw lamb” (touch with your paw) from “nose lamb” (push with your nose) and even learning to respond correctly to commands like “To Jeffrey... take decoy” (Pilley, 2013a). I’ll discuss learning by exclusion and multi-word combination below, as well as the nature of Chaser’s words.
The simplest “mutual exclusivity” experiment goes like this: a child is presented with two objects, one familiar and one novel, and is asked to give the experimenter the “dax” (a novel label that the child presumably has never heard before). Across dozens of studies, children as young as 14 – 18 months show evidence of this kind of behavior (Halberda, 2003; Markman, Wasow, & Hansen, 2003), although they do not tend to retain the link between the novel word and novel object until significantly later (Horst & Samuelson, 2008; Bion et al., 2013).

While the phenomenon of mutual exclusivity is clear and highly replicable, the psychological sources of children’s behavior remain obscure. Some accounts have posited that children reason from basic principles either about the structure of the lexicon (Markman, 1990) or about novel stimulus mappings (Mervis & Bertrand, 1994); others have proposed explanations of the same behavior in terms of pragmatic reasoning about language use in context (Clark, 1990). Still others, myself included, have argued that this behavior could in principle arise from general principles of statistical inference (Regier, 2005; Frank, Goodman, & Tenenbaum, 2009). In principle, these explanations themselves are not mutually exclusive, and could support the same behavior to different degrees at different times in development (Lewis & Frank, 2013).

Given this situation, I’m not sure what we can infer from the fact of Chaser’s learning by exclusion. The evidence—as I see it, at least—doesn’t warrant any reverse inference from an animal displaying learning by exclusion to a particular explanation of why he shows that behavior. There is one clue in Pilley’s account of the exclusivity experiments, however, tossed in apparently as a device to add narrative tension. Chaser showed extremely slow reaction times (more than a minute) during his first mutual exclusivity trials. These early delays, followed by faster performance in later trials, suggest that rather than exclusivity being the result of an innate inference, some kind of learning was almost certainly taking
In his demonstration with Chaser, Pilley attempts to address issues that were raised about previous demonstrations of learning by exclusion. I don’t think he succeeds in this goal, though perhaps this has as much to do with the multiplicity of explanations for the mutual exclusivity behavior as it does with his experimental designs. Markman and Abelev (2004) note that Kaminski et al. (2004)’s demonstrations with Rico had no control condition testing whether Rico succeeded because of a baseline preference for novelty. Perhaps Rico would simply have retrieved a novel object even if there were no label, just because it was more attractive. Pilley repeated the same basic experiment that Kaminski et al. (2004) did, but added a control condition in which Chaser—prior to any exclusion training—was asked to fetch familiar competitors in the presence of novel objects (which he did successfully). Pilley argues that this control condition shows that Chaser does not have a baseline novelty preference; but it does not. It shows that Chaser’s baseline novelty preference is not stronger than his mapping of familiar labels. Thus, this control condition doesn’t address the underlying issue raised by Markman and Abelev. Chaser could still have initially been guided by a weak novelty preference—in fact, novelty might well have been the critical cue in those initial very slow learning trials.

Chaser’s “Grammar”

Beyond the sheer quantity he aimed for, Pilley’s experiments on multi-word utterances are perhaps the most novel aspect of his work with Chaser. As reported in Pilley (2013a), Chaser was able to comprehend sentences of the form “to frisbee take ball” (meaning, take the ball to the frisbee). Chaser performed above chance (75% correct) in executing instructions of this type, using the names of objects that had not been specifically trained in this task.

A few aspects of this set of experiments stand out. First, the odd word order Pilley chooses is not an accident: It is optimized to Chaser’s cognition. In pilot work, Pilley
the final word in his mouth, even though it was meant to be the location (e.g., “take the ball to
the frisbee” implies that you should pick up the ball, not the frisbee). This learnability finding
suggests that Chaser’s cognitive limitations—in this case, perhaps a recency bias in
memory—shape his ability to learn particular regularities. Suggestions about the effects of
cognitive limitations on language structure have been made regarding human language as
well (Christiansen & Chater, 2008), so it would be of substantial interest to understand what
types of regularities Chaser can and cannot learn (and perhaps how those relate to canine
sequence processing abilities). Such studies might be more informative than the mere fact of
success.

Second, although Chaser’s word-order learning is a substantial accomplishment, it’s
worth noting that Pilley’s behaviorist vocabulary isn’t really equipped to describe the findings
that he gets. He writes that “as the farmer alters and labels the goals of the herding, such as
herding the sheep toward or away from the farmer or to different locations, the dog infers that
the name of the location specifies a given location to which the dog must herd the sheep
without the farmer; thereafter, the dog needs only a single verbal command to take the sheep
to the designated location.” (Pilley, 2013a). This vocabulary doesn’t have a way to describe
how Chaser represents abstractions like “location,” or how he maps them to positions in a
string of words. In that sense, it is strongly reminiscent of the circular accounts given in
previous behaviorist analyses of language (Skinner, 1957).

Are Chaser’s Words Just Associations?

The question of whether human children’s words are “mere associations” has been the
subject of a substantial debate both historically and in recent years (e.g. Sloutsky, Lo, &
Fisher, 2001; Waxman & Gelman, 2009). The same thing can be asked about Chaser’s
words. This debate often tends to be more circular than informative. We might instead ask
two related questions: first, what is the nature of Chaser’s representation of words, and
My own guess is that words are represented by humans as associations between
linguistic forms and concepts. These associative links are long-term memories that obey the
regularities governing such associations (Bahrick, Bahrick, Bahrick, & Bahrick, 1993; Frank
et al., 2013). They may gain some privilege due to modality: associations with words are
highly salient, and words themselves are represented in much more detail than, say, arbitrary
tones. But I’d argue that what makes our language special is not the words themselves, but
the inferences we make about the use of words.

Human speakers use words to refer to the world and to communicate about both
internal and external content. What’s more, even in early childhood, children seem to
appreciate the nature of this usage: They are able to make a wide variety of powerful
inferences from the fact and circumstances of language use (Baldwin, 1995; Vouloumanos,
Onishi, & Pogue, 2012). This distinction between the long-term storage of words and the
inferences that can be made from their use in context is critical to recent computational
accounts of word learning (Frank et al., 2009; McMurray, Horst, & Samuelson, 2012).
Distinguishing learning and inference also helps to explain a number of empirical facts about
children’s behavior in word learning experiments, like the rich-get-richer nature of word
learning or the previously-mentioned ability to make mutual exclusivity inferences without
later retaining the target word.

Seen from this perspective, Chaser might have similar representations of word meaning
to human children, at least for the concrete nouns and noun category labels that he knows.
What still bears exploration is the extent to which he can make inferences about the social
role that labels play. I would love to see his performance in classic tasks by Baldwin (1991),
in which cues to the speaker’s intention are pitted against salience and temporal contiguity.
Or, further afield, he could even be tested in looking-time paradigms like those of
Vouloumanos et al. (2012) to test expectations about the communicative functions of
words flexibly as a marker of social communication.

Conclusions

Chaser is a touching book that reports on the product of an astonishing amount of sustained effort by Pilley. Certainly it feels like an endpoint that may not soon be repeated in canine language training. On the other hand, I am not sure what it tells us about human language. I say that reluctantly, since there is a lot to like about this work. But its primary contribution to the discussion of human language is to provide (further) evidence against a series of rubicons—learning by exclusion and multi-word combination, to name two.

If we reject this kind of dichotomous thinking and instead consider the simultaneous contributions of many different abilities to human language, the interest in Chaser will be not that he can show particular behaviors, but how he performs them. I would have loved to see experiments that show the circumstances under which Chaser can’t learn a word, to test hypotheses about the necessary ingredients for learning. How would he perform in a range of intention reading and social-cue combination tasks (Baldwin, 1991; Hollich, Hirsh-Pasek, & Golinkoff, 2000)? Pilley also speculates that Chaser may have learned some meaningful words by overhearing them in conversation; it would be exciting to see Chaser’s performance in a learning-by-overhearing paradigm that directly tests this ability (Akhtar, 2005). Unfortunately the book and accompanying scientific papers don’t say nearly as much about Chaser’s limitations as they do about his abilities.

Chaser is admirable attempt to jump across the rubicon. But if we abandon the notion of rivers to be crossed, and move instead towards a multifactorial view of what makes human language unique, we need to acknowledge that what once seemed a river may be a wide, muddy swamp instead. Exploring this landscape may require more slogging and less jumping.

References
Science, 8, 199–209.

Frank, M. C., Tenenbaum, J. B., & Gibson, E. (2013). Learning and long-term retention of

57–77.

