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ABSTRACT

The thesis of this paper is that humans achieve robustness in speech perception by
evaluating and integrating multiple sources of information. The sources of information
are assumed to be continuous rather than discrete (categorical) and represent both bottom-
up and top-down contributions. The bottom-up sources take the form of acoustic features,
which are the perceptually relevant physical properties of the speech signal. The top-
down sources are constraints given by the phonological, lexical. syntactic, and semantic
context of the message. All sources of information are represented by fuzzy truth values,
which indicate the degree to which each source supports each possible alternative. The
multiple sources of information are integrated together in such a manner that the least
ambiguous sources have the most impact on recognition.

These assumptions about speech perception have been formalized within the frame-
work of a fuzzy logical model of speech perception. Three operations are assumed. First,
feature evaluation involves the derivation of various perceptual features. The features are
assumed to be continuous rather than discrete. The outcome of featural evaluation is a
truth value, t(x), representing the degree to which each relevant feature is present in the
speech stimulus. The second operation is prototype matching which involves the integra-
tion of the features. The featural information is compared with perceptual unit defini-
tions, or prototypes, to determine to what degree each prototype is realized in the speech
sound. Prototypes define a perceptual unit in terms of arbitrarily complex fuzzy logical
propositions. The third operation is pattern classification. During this stage. the merit of
each potential prototype is evaluated relative to the summed merits of the other potential
prototypes. The relative goodness of a perceptual unit gives the proportion of times it
would be selected as a response or its judged magnitude.

The model is tested against human perceptual results derived from identification
experiments using synthetic speech. The experiments are designed to manipulate inde-
pendently various acoustic characteristics of the speech signal and higher-order con-
straints. The acoustic characteristics that have been studied include voice-onset time,
aspiration intensity. fundamental frequency, formant patterns of stop consonants, and con-
sonant and vowel duration of stops and fricatives. The higher-order constraints that have
been varied include phonological. lexical. and syntactic/semantic context. The results of
these experiments support the model and also allow rejection of alternative models of
speech perception.
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17 .1 SPEECH PERCEPTION: HEARING MORE OR LESS THAN THERE IS

__ From a pattern-recognition perspective, s h perception i :
s]:ull. There does not seam to be an exact relﬁznsﬁp bztweI;nlih:namazl.
signal and tlhe perceived patterns in the message. As an example th? -us1.:1e
of recognition do not seem to coincide with units of the speech'sign ‘im
same cases, we hear word boundaries where there is no or little sile -
hear complete words with significant silent periods. In the statenenr;c? >
you may see," there is usually more silence during the /aet/ porti o
"that™ than between the words "may" and "see." This example sho‘,,son of
1s':,tl:;cc‘:‘:ea-":is;\J'Ez sggments of sound can produce a coherent or unitary perCEptﬂ;?;

a iscrete rcept n i i
vy pe pts can result from a relatively continuous sound

The acoustic properties characterizing a s h segmen

depending on the placement of that segment ingthe peecspeech n;sssizne top.:a

example, certain properties of stop consonants depend on their posi.tion e
words. ~Voice onset time (VOT) is an important property for the voicing ;g
stops in word-initial and medial position, whereas this property is les
common in word-final position. Perceptually, VOT appears to be :impoztan:
for thg identification of stops in initial and medial position, whereas
pregec_img vowel duration is important for voicing of stops in word-final
position, Thus, to recognize stops, the listener must allow for their
position-dependent properties. '

Anothe:_: obstacle in the recognition of small s h segments i

the acoustic signal specifying a particular 1ingu?§?:cic unit is ::n::::
sensitive, That is, the acoustic properties of a unit found in one context
are significantly modified in another. Consider the classic example of the
syllables /di/ and /du/ (Liberman, Cooper, Shankweiler, & Studdert-Kennedy
1.967_).' The acoustic signal corresponding to the initial /d/ sound is
significantly different in the two syllables. The following vowel context
modifies the properties of the preceding stop. This example shows that
perce_ptual recognition of some speech sounds must take into account the
contribution of the surrounding context.

One reason that speech perception might be accomplished, even in the
pr;esergcelof the aforementioned difficulties, is the contribution of
linguistic context. It is generally agreed that the listener normally
ac;h1eves good recognition by supplementing the information fram the acoustic
signal with contextual information generated through the utilization of
l.mowledgg in long-term memory. There is considerable debate concerning how
informative the acoustic signal actually is (Blumstein & Stevens 1979; Cole
& Scott 1974; Liberman, et al. 1967; & Massaro 1975b). Even if the acoustic
s:.gngl proved to be sufficient for speech recognition under ideal
conditions, however, few researchers would believe that the listener relies
on only the acoustic signal.

17.2 INFORMATION-PROCESSING MODEL

oOur study of pattern recognition in speech has been carried out within
a general information-processing model (Massaro 1975a, 1975b, 1979). A
schematic representation of the stages of processing in the model 18
presented in Figure 17.1. At each stage of processing, memory and process
conponents are represented. A particular memory camponent (indicated by @
rectangle) corresponds to the information available at that stage, whereas
the co;responding process camponent (indicated by a circle) represents ‘
operations applied to the information in the memory component.
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FIGURE 17.1 SCHEMATIC DIAGRAM OF INFORMATION-PROCESSING MODEL .

The feature detection process transforms the energy pattern created by
the language stimulus and transduced by the appropriate receptor system into
a set of features held in preperceptual storage. The changes in sound
pressure set the eardrums in motion, and these mechanical vibrations are
transduced into a set of neural impulses. It is assumed that the signal in
the form of continuous changes in vibration pattern is transformed into a
set of relatively independent features. Features are not limited to
primitive attributes but can be relatively camplex. In speech, for example,
the amount of energy in a particular frequency band would be a relatively
simple feature, whereas a camplex feature might include information about
the direction and rate of freguency change of the sound (Stevens 1981). It
would be possible, for example, to have a feature detector that responds to
the rising first formant transition that is characteristic of the class of
voiced stop consonants. Primary recognition evaluates and integrates these
features into a percept which is held in synthesized memory.

Secondary recognition transfomms synthesized percepts into meaningful
forms in generated abstract memory. In speech perception, it is assumed
that the input is analyzed syllable by syllable for meaning. The secondary
recognition process makes the transformation from percept to meaning by
finding the best match between the perceptual information and the lexicon in
long-term memory. Each word in the lexicon contains perceptual and
conceptual codes., The concept recognized is a function of at least two
independent sources of information: the perceptual information in
synthesized memory and the semantic/syntactic context in the message.
Rehearsal and recoding processes operate at generated abstract memory to
maintain and build semantic/syntactic structures. There is good evidence
that this memory has a limited capacity, holding about five, plus or minus
two, chunks of information.

The following example may help clarify the differences among these
three levels of processing; presented with a tone, the listener can detect
or sense the presence of sound, hear and remember a tone of a particular
quality, and even identify it as a particular note on the musical scale.
Figure 24.2 illustrates the outcome of these three stages as detection,
perception, and conception, respectively. Each of these stages makes
information available to a response selection and programming process.
Accordingly, some response execution can be initiated by any of the three
stages of language processing. Although the boundaries between these stages
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FIGURE 17.2 THREE STAGES OF PROCESSING A SOUND IN MUSIC.

are sometimes fuzzy, we have found it helpful to maintain these distinction
in our experimental and theoretical research. '

17.2.1 Pattern Recognition

This information-processing model has served as the basis for a model
pattern recognition in speech perception. Central to the model is the ide
of prototype descriptions stored in the listener's long-term memory. . T
descriptions are propositions specifying the featural properties of: spe
sounds of roughly syllabic size (Oden & Massaro 1978). T

According to the model, well-learned patterns are recognize
accordance with a general algorithm regardless of the modality or particu
nature of the patterns (Massaro, 1979; Oden & Massaro, 1978). The
postulates three operations in perceptual (primary) recognition: -f
evaluation, prototype matching, and pattern classification. Continuou:
valued features are evaluated, integrated, and matched against pro
descriptions in memory, and an identification decision is made on the
of the relative goodness of match of the stimulus information wit
relevant prototype descriptions. The model is called a fuzzy logical
of perception (abbreviated FLMP), and it will be helpful to discu
concept of fuzzy logic and how it is used in the model.

17.2.2 Fuzzy Logic

In fuzzy logic, propositions are neither entirely true nor fals
rather take on continuous truth values. For example, we might say:
team is having a "good" seascn or that a meal is somewhat spicy. Or
logical quantification would require that the team be performing well o
and that the meal is either spicy or it isn't. Fuzzy logic theory:(2
1965; Goguen, 1969), on the other hand, allows us to represent
continuous nature of things. In fuzzy logic, we can construct a members
function: for example, short(x) which is true to the extent that item
member of the set short. It should be noted that fuzzy truth is diffe
from probability. If we say that a whale is a fish to degree .2, that d
not mean that there is a .2 probability that a particular whale is .
Rather, it is true that the whale is a fish to degree .2. :

An important part of fuzzy logic theory concerns the realization ¢
standard logical operations of conjunction, negation, and. disjunctiom.
range of truth values, t(x), in fuzzy logic goes from { for perfectly
to 1 for perfectly true. Thus, a reasonable definition for negation:1
additive complement:

t("x) =1 ~ t(x). (1)

358

where t{"x) is

e t( the truth of not x. Goguen (1969} has
possiblities for

the conjunction (*) of two events a and b:

suggested two

t(a"b)

t{a) x t(b), (2)

t(a™d) = min(t(a), t(b)). 3

Massaro and Cohen (1976) tested an additive definition for the conjunction
of two events

t{a®b) = t{a) + t(b). (4)

gesgarch in a number of domains has consistently supported the
multiplicative over the other two forms of conjunction, Massaro and Cohen
{1976) the conjunction of voice-onset-time and fundamental freguency as
perceptual cues to the /si/-/zi/ distinction. A multiplicative combination
of the’cues values described the results about four times more accurately
thap d1d an additive combination. oden (1977) investigated which set of
def1r_11t19ns of fuzzy logical conjunction best fit judgments about logical
cmbma.tmns cf pairs of statements about class membership functions (e.q.,
a bat' is a bird, and a refrigerator is furniture). The data from the
experiment were better explained by the multiplication rule of Equation 2
than by the minimization rule of Equation 3,

We do not assume that humans actually carry out the process of
njultlplma_tmn, Just that multiplication closely represents the processes
mvolveg'i in conjoining or integrating different sources of information. A
model mimics the behavior of the phonemenon of interest. A mathematical
modgl‘doe'sn't necessarily attribute the mathematical processes to the
entities involved; it simply describes the cutcome of the processes. By
assuming that the feature values are multiplied by the listener, we do not
mean that the listener actually multiplies feature values. We simply mean
that the features are combined in such a way to produce an outcome that is
equivalent to a multiplication of the feature values. As acknowledged by
Rumell"nart and Norman (1983), modeling a bouncing ball with differential
equations does not imply that the ball itself understands or uses these
equations. Modeling human performance with various formalisms should not be
taken to mean the human understands or uses these formalisms {Lopes 1981).

17.3 FUZZY LOGICAL MODEL OF PERCEPTION (FLMP)

Acqor_dinq to the fuzzy logical model of perception (FLMP), primary
recogmf:lon is carried out in three stages. The first stage is feature
evaluation, during which the features transduced by the sensory systems are
assxgngd truth values. The features are assumed to be continucus rather
than dlscrgte, and thus featural evaluation provides truth values, t(x),
representing the degree to which each relevant feature is present in the
speech stimulus, '

'?he second stage of recognition is prototype matching which involves
Fhe 1ntc_-:-gra_tion of the features. During this stage, the featural
mforma_tlon is compared with perceptual unit definitions, or prototypes, to
determine to what degree each prototype is realized in the speech sound.
Prototypes define a perceptual unit in terms of arbitrarily complex fuzzy
logical propositions.
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The third stage of recognition processing is pattern classificatj
During this stage, the merit of each potential prototype is evaluat
relative to the summed merits of the other potential prototypes. Th
relative goodness of a perceptual unit gives the proportion of times ;
would be selected as a response or its judged magnitude. This is similar g
Luce's (1959) choice rule, In pandemonium-like terms, we might say that j
is not how loud some demon is shouting but rather the relative loudness
that demon in the relevant crowd of demons. An important prediction of
model is that one cue has its greatest effect when the second is at its
ambiguous level. Thus, the most informative cue has the greatest impa
the judgment,

The FLMP defines a representational system for the processing
speech, Following the illuminating analyses of Palmer (1978), we define
five attributes that must be specified for any representational syst
These attributes and their instantiations are given in Table 17.1. G

Table 17.1 Five attributes of the representation system
assumed by the fuzzy logical model of speech perception

1. the represented world -- speech

2. the representing world — listener

3. aspects of the represented world being modeled --
acoustic characteristics of the speech, speech sounds
(syllables, words), memory of speech sounds,
integration of characteristics, decision, and
classification processes.

4. aspects of the representing world doing the modeling —
features, truth values, integration operations,
prototype descriptions, and classification
algorithms.

5. correspondences between represented and representing
worlds —

represented representing

1. acoustic characteristics 1. features

2. speech sounds 2. perceptual units

3, memory for speech sounds 3. prototypes

4. integration of characteristics 4. prototype matching :
5. decision/classification 5. pattern classification

The represented world is speech, and the representing world is t
human listener. The aspects of the represented world being modeled,
aspects of the representing world doing the modeling, and th
correspondences are listed in attributes 3, 4, and 5, respectively. TR
value of presenting the model in these terms is that it makes explic
attributes of speech that would have to be included in almost any reasonab
representational system. The attributes listed in the representing wor
are those assumed by the FLMP are subject to falsification in experiment
arnd theoretical tests, S
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i7.4 INTEGRATING ACOUSTIC FEATURES

In order to illustrate how the FLMP is applied and tested within the
damain of pattern recognition, consider an experiment carried out by Massaro
ard Oden (198Ra). Seven levels of voice onset time (VOT) were crossed with
seven levels of the onsets of the F,-F, transitions in the synthesis of stop
consonant-vowel syllables. The VOTs ranged fram a campletely voiced to a
completely voiceless sound. The values were 14, 15, 2@, 25, 39, 35, and 40
msec. The seven levels of the F,-F; onset frequencies ranged fram 1345 to
1796 Hz for F, and 2397 to 3200 Hz for Fy to give a continuum of sounds
going from a labial to an alveolar place of articulation., Subjects made
repeated identifications of random presentations of the 49 unique syllables
from the alternatives /bae/, /dae/, /pae/, and /tae/,

The four panels of Figure 17.3 present the percentage of /bae/, /pae/,
/dae/, and /tae/ identifications, respectively, as a function of the two
independent variables. The levels along the abscissa are not equally spaced
but rather have been adjusted to be proporticnal to the differences between
the marginal means across the levels of the F.,~F, transitions. These

differences were computed separately for each of the four response
alternatives and then averaged over response types so that all four of the
panels have the same spacing along the abscissa,

In the FLMP, the following propositions ‘specify the prototype
descriptions for the four response alternatives in the experiment.

/bae/:

{short VOT) and (low F2-E‘3 onsets)

{(5)

PROBABILITY OF IDENTIFICATION

DAE “r TAE -
C75~ 4F 4
|
050 1+ -
025~ big -
i
I
OF aF — o=zl |
FEr— L | L H L il n " . L i
12 3 4 5 &6 1T 12 3 4 5 g5 7
LOW HiGH LOW HIGH

Fa -Fa TRANSITIONS

FIGURE 17.3 PERCENTAGE OF BAE, PAE,DAE, AND TAE IDENTIFICATIONS
AS A FUNCTION QF VOT AND F2-F3 TRANSITIONS.
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/pae/:
/dae/:

{long vOT) ard (low Fy-F-q onsets) (6)

{short VOT} and (high Fo-F4 onsets) {7)

/tae/: {long VOT) and (high Fp~F; onsets) (8)
The prototype propositions specify the id of
acoustic features for the particular spiech scn:u'e;;l.:L ";‘?xze} u;rso:efrteiae‘;h fgi
prototypes would also include other acoustic features characterizing o
consonants and vowel /ae/. These properties are not included ‘i
propositions, since they are present in all of the four alternative:s:. :
mathematical form of the fuzzy logical model necessitates consideratio
only those properties which differentiate the relevant prototypes.

Upon presentation of a speech sound, th i Sro
, the feature evaluation pro

produces a fuzzy truth value specifying the degree to which it is trpue'-'.":"

the sound has the relevant acoustic feature. For example, '

(9)

represents that it is .60 true that the speech sound S from i th
‘ ;s the ith
and jth column of the factorial stimulus design, hé

t[short VOT(S;4)] = .60

: ! ya shor
simplify the notation, let 5Vv; and LVj correspond to short and tlo‘:'gT.VGI‘
respectn_rely. The subscript 1 signifies that the values change onlly'f i
changes in the variable VOT. Similarly, LO; and HO; correspond to low
high Fz-'E‘3 on.sets, respectively. The valuesjchange 3nly with changes in
column j variable of the F,-F, onset frequencies. Aalso, we will hencefor
use the expression "short VOT" to represent its truth value t(short V
The truth of the negation of a feature is defined as one minus the t
value of the feature. In this case, if .6 specifies the truth value
short VOT, then 1 - .6 = .4 would specify the truth value of a long VOT
general, the value LV; =1 - SV;. A similar complementary relationship
assumed between high and low F,-F5 onsets; the value Loj is equal to:

HOj.

At the prototype matching stage, a determination i
: : r s made regarding:;
Sz;e;:gigch tthl'? conjunction of features in each prototype definition
. in the speech signal. The multiplicative rul junct
gives the matching function P rule for conjleci:t

bae{Slj) = SV]_ X mj- {18)

and so on for the other three prototypes.

Given the matching functions for each of the alternative protof
the speech sound is identified on the basis of the relative degree of mat
Following .thf:\ rationale of Luce's (1959) choice model, it is assumed tha
the probability of identifying a stimulus to be a particular syllab'lé"”‘
equal to the relative degree to which that syllable matches the stimu
campared to the degree of match of the othex syllables under considerat
Given that the speech sound must be identified as either /bae/, /pa

/dae/, or /tae/, the probability of a bae i ifi i i i i
/4 gi\'ren o ‘ P ty a bae identification given stlmulus:__

bae(Sij)

P(bae:Sij) = (11}

bae(sij) + pae(sij) + dae(Sij) + tae(sij)
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where the variables in the ratio represent the matching functions for the

four alternative speech sounds.

The simple model described above failed to capture the fine detail of
the results. A more complex model assumes that features defining the
prototypes include modifiers to provide more specific information about the
ideal feature values, For example, the locus of F» at the instant of
release is usually higher for /t/ than it is for /d/ (rant, 1973, Chapter
11). Thus, the prototype for /tae/ might be defined as

/tae/: (long VOT) and very {high Fo-F5 Onsets) (12)

where "very" is implemented as an exponent on the feature value. If the
exponent were 2, for example, a truth value of .8 would be only .64 when it
is squared. This captures the possibility that F,-Fy are normally higher
for /t/ than /d/ and listeners require a higher value of Fp-F for /tae/
than for /dae/. The predictions of the complex model witg a single
prototype modifier gave a reasonably good description of the 147 indeperdent
response probabilities with just 15 free parameters.

17.5 INTEGRATING HIGHER-ORDER CONTEXT

one important test of the FLMP involves the contribution of higher-order
context to speech perception. In the model, the bottom-up information
remains independent of the top-down information and the two sources are
combined in the same manner as two bottom-up SOurces. in terms of the
model, one basic limitation in previous research is that it has been
primarily directed at showing a positive contribution of linguistic context
rather than at how it is integrated with information from the acoustic
signal (Cole & Jakimik, 1978; Marslen-Wilson & Welsh, 1978; pollack &
Pickett, 1964). Recent research in our laboratory, along with other current
studies, overcome these limitations in previous research and provide

quantitative tests of the FLMP.
17.5.1 Phonological Context

Massaro and Cohen (in press) assessed how the information from the
acoustic signal is combined or integrated with information from phonological
constraints in English. phonological constraints refer to the fact that
languages are redundant in tems of the possible sequences of speech sounds.
There are constraints on the ordering of speech sounds within English words
such as /r/ but not /1/ following word-initial /t/. Listeners were asked to
identify sourds along a continuum between /li/ and /ri/, which was made by
varying the starting frequerncy of the third formant (F3) transition. These
sounds were placed after each of four initial consonants. When the sounds
are placed after the initial consonant /s/, /1l/ is phonologically admissible
in English, but /r/ is not. 1f phonclogical constraints influence
perception, listeners should tend to hear /1/ following the sound /s/.
Given an initial consonant /t/, however, listeners might be more likely to
hear /r/ than /1/. 1In English, /1/ does not follow initial /t/. In
addition to these two conditions, the contexts /p/ and /v/ are also
included. Both /1/ and /r/ are phonologically admissible following /t/, but
neither is admissible following initial /v/. The results not only provide a
test of whether phonological constraints contribute to speech perception,
the experimental design allows quantitative tests of how context and an
acoustic feature are integrated together in speech perception.

Each speech sound was a syllable beginning with one of the four
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consonants, /p/, /t/, /s/, or /v/, followed by a liquid consonant rang ng
seven levels from /1/ to /r/ followed by the vowel /i/ (Massarc & Cohen
press}. On each trial, the syllable was randomly selected Wit
replacement from the set of 28 syllables generated by the facte
carbination of the four jnitial consonants and the seven F4 levels of
following liquid., Subjects identified the sound by pressing one of. e
buttons, labeled PLE, PRE, TLE, TRE, SLE, SRE, VLE, and VRE. Subjects
told that their task was to identify the syllable on the basis of what
heard. Thgy were told that there was no correct response and simply ¢
the best judgment they could. Subjects were tested for two days w.
gractlce trials and two sessions of 286 experimental trials each on:
ay. '

The lines in Figure 174 present the predictions of the fuzzy model of
speech perception. The critical assumption of the model is that the
featural information from the liquid and the phonological context provide
independent sources of information. The featural information representing
the liguid can be represented by the truth value T; where the subscript i
indicates that T; changes only with the Fj transition. For the /1l/-/r/
identification, T specifies how much R-ness is given by the critical F
transition feature. This value is expected to increase as the onse
frequency of the Fy transition is decreased. With just two alternatives
along the continuum, it can further be assumed that the amount of L-ness
given by the featural information is simply one minus the amount of R-ness
 given by that same source. Therefore, if T; specifies the amount of R-ness

given by the F4 transition, then (1-T;) specifies the amount of L-ness given
by that same transition.

The recognition of the initial context consonant was very g
averaging about 95 percent correct. Figure 17.4 gives the probabilit
/r/ identifications for each of the two days of the experiment. The :
in Figure 17.4 show that the identification of the ligquid sound wa
orderly function of both F; of the liquid and the initial consonant,
expected, the proportion of /r/ identifications increased with decre
1_:he starting value of F3 of the liquid. More importantly, 'an
identification was more likely in the context of /t/ than in the contex
/‘p{’ or /v/ and least likely in the context of /s/. The effects of
initial context consonant were largest at the more ambiguous values
In addition, the context effects did not appear to decrease with expe
in the experiment. In summary, the results of the experiment show 1
effects of both the acoustic featural information of F, and the phonolog
context of the initial consonant. The significant interaction of these
variables reveals that the magnitude of the context effect was larges
the more ambiguous levels of the acoustic featural information,
| I I ! T T 7 T T T T i

I.O"" -

The phonoleogical context also provides independent evidence for R and
L. The value Cy represents how much the context supports the consonant R.
 The subscript j-indicates that C; changes only with changes in phonological
context. The value of Cj shoul% be large when R is admissible and small
when R is not admissible. Analogous to the treatment of the featural
information, the degree to which the phonological context supports the
conscnant L is indexed by (1—Cj).

The listener is assumed to have two independent sources of information.
The amount of R-ness and L-ness is determined by integrating these two
sources. The amount of R-ness and L-ness for a given syllable can be
represented by the conjunction of the two independent sources of
information:

R-ness = (T; Cy) (13) .

Leness = [(1-T;) © (1-Gy)] (14)

In this case, for pattern classification, the probability of an R-
response is predicted to be

T
P(R) = i (15)
Ticj + (l-Ti) (l—Cj)

o
[2}]

The model was fit to the proportion of /r/ identifications as a
function of the F, of the liguid and the initial consonant context. Seven
values of T, are required for the seven levels of the F transition of the
liquid. Unique C: values are required for each of the four different
initial consonant contexts. Fitting the model to the observed data,
therefore, requires the estimation of 11 parameters. The predictions of the
model were obtained by minimizing the squared deviations between predicted
and observed values, using the routine STEPIT {Chandler, 1969).

PROEABILITY /r/
h

o
Y]

Figure 174 shows that the model provides a good description of the
results, with an average squared deviation of less than 5 percent. In
addition, the parameter estimates of the model are meaningful. The T;
values, representing the degree of R-ness, increase systematically witflm
decreases in the starting frequency of Fj. The Cs values change

| 2 3 4 5 6 7 | 2 3 4 5 i ; i i
HIGH Fa TRANSITION systematically with phonologllcal context; the c}egrge ol R-ness given by
FIGURE 17.4 3 LOW HIGH F3 TRANSITION context is much larger for initial /t/ than for initial /s/. Relative to
4 THE OBSERVED (POINTS) AND PREDITED (LINES) PROBABILITY OF AN / the context /v/, the context /p/ is somewhat more supportive of /r/ than of
IDENTIFICATION AS A FUNCTION OF THE F3 TRANSITION AND PHONOLOGICAL CONTEX .~ /1/. This could be due to the fact that, in natural English, initial /p/ is
' more likely to be followed by /r/ than by /1/ (Roberts, 1965).
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17.5.2 Lexical Context

Ganong (1980) assessed the contribution of lexical context to £

perception of stop consonants. The voice-onset time of the initial sto 100
consonant was varied to create a continuum from a voiced to voiceless sound "~ ®
The following context was varied so that either the voiced or the voiceles
stop would make a word, For example, subjects identified the initial sto 90 |- =0
as /d/ or /t/ with the following context ash where (where /d/ makes a wox Vid
and /t/ does not). Voiced (/d/) responses were more frequent when /d/ ma 9---5
a word than when /t/ made a word. The contribution of lexical context wa 80+ K4
largest at the more ambiguous levels of voice-onset time. These resu 0 /
have been described quantitatively by the FLMP with the basic assumpt 2 10k 9’
that acoustic featural information and lexical context make independen "g )
contributions to perceptual recognition (Massaro & Oden, 19806D). = /
€ 60 /
17.5.3 Sentential Context 3 "I
o “Q
In a study of sentential context effects, Isenberg, Walker, and | = S0t : ?
(1989) created a speech continuum between the function words the and s '
The continuum was created by beginning with a natural utterance of the: wor 2 a0l ,’
to and attenuating the onset energy between 14 and 36 4B in steps of 2. s 'l
With little attenuation, the word is heard consistently as to; with a lot ¢ 2 !
attenuation, the word is heard as the. Intermediate levels of attenu @ 30r /
give more ambiguous percepts. The test word was placed as the initial _ H
in one of two sentence contexts 20 . A
. . o /7 Contaxt Obs Pre
To/the go is essential. / gold * —
10 . - go o —
To/the gold is essential. /p—
. . o
The only difference between the sentences 1S whether go or gold follo ) , ‘ L , , L

test word. The appropriate syntactic constructions are "To go™ and "Th
gold," and the experimental question was whether the syntactic context wol ld
influence perceptual recognition of the test word.'

14 16 18 20 22 24 EQ 28 3D 32 34 36
Attenuation (dB)

FIGURE 17.5 OBSERVED (POINTS) AND PREDICTED (LINES) PERCENTAGE OF "THE"

subjects were presented with the twelve versions of the test w'dr
] p IDENTIFICATIONS AS A FUNCTION OF ONSET ATTENUATION AND SENTENTIAL CONTEXT.

the two sentence contexts and were asked to identify the test words a
or to. Figure 17.5 gives the observed results, As expected, the percen
of the identifications increased systematically with increases in
attentuation of the onset of the test word, Sentential context also ha
effect, especially at the intermediate levels of attenuation of the
word., 1In terms of our model, the acoustic features in the test word and
syntactic constraints given by the sentence provide independent sourc
information for identification of the test word. The predictions
model are identical in form to those given in the study of phonolog:
constraints. If F; is the featural information supporting the perce
and C: is the syntactic information supporting this same percep
probab?il ity of a the identification given the contexts gold and go are

Figure 17.5_a1.|.°.o gives the predictions of the model. The model provides a
good description of the results with an average square deviation of less
than 2 percent.

. The'role of context in speech perception is relevant to contemporary
issues in psychology, phonology, and artificial intelligence. One
persistent issue in psychological theory is whether or not the context
effects modify lower level feature analysis processes (Broadbent, 1967;
Morton, 1969). The description of the results given here and research in
other domains provide strong evidence that context effects operate
independently of lower level featural processing (Massaro, 1979). Recent

b (thesgold) = E‘1C3 (16) theories of phopology (Chcgnsky & Halle, 1968; Ladelfoged, 1975) and syntax
E‘-Cj . (LF:) (l-Cj) have begun to give more weight to actual psychological performance and the

i i present results indicate that phonclogical and syntactic semantic

F. (1-Cs) con;t_rgints_ are p'sychologic.?tl ly significant. Finally, with respect to

p(the:go) _ i 3 an artlfl‘c:L?l intelligence, it is now generally agreed that autamatic speech
recognition cannot be completely bottam—up but must involve the gtilization

Fi )+ (1-F3)CH : e d ; ; ;
1(1"Cj). (1-F3)Cq of linguistic constraints in perception and recognition of the message

(Iflatt, 1977). The present results suggest that phonological constraints
might be successfully utilized in automatic speech recognition by machine.
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17.6 FUZZY TRUTH VALUES VERSUS PROBABILITIES exactly the values are changed with experience. At some level, the process

will be similar in form to the Bayesean analysis; the fuzzy logical value
for some evidence Ey will be related to the likel ihood that the evidence
ame from some par}:icular alternative. Bayesean analysis also has a
mechanism for a priori probability. Fuzzy logic could provide such a
mechanism by simply treating a priori probability as an additional source of
information (Massarc, 1979).

Fuzzy truth values are clearly not probabilities; yet there appea
be a close mathematical correspondence between models based-o
concepts. In this section, a general decision theory based on probab
is contrasted with the FLMP. The heart of the probability model-isg
Theorem, which is an optimal decision rule for obtaining and :
probabilities, Bayes Theorem states that '
17.7 AN ALTERNATIVE VIEW: CATEGORICAL PERCEPTION
P(E:H;) X P(Hp) '
P(Hl:E) =

(18) An alternative view of speech perception has been proposed. People

might be biologically disposed to discriminate easily those distinctions

important to language and not to discriminate differences that are not

informative, For example, it has been proposed that voice onset time (VOT)

is the primary acoustic cue distinguishing voiced and voiceless stop
consonants. Infants and adults are claimed to discriminate voiced and

voiceless values of this cue, but apparently not a similar physical

difference within either the voiced or voiceless category. According to

this theory of categorical perception, we perceive a continuum of acoustic

differences in terms of only two categories, and, ideally, the categories

are represented by having very noticeable differences between categories and
few, if any, noticeable differences within a category.

Ei P(E:H;) X P(H;)

where P(H;:E) is the probability that some hypothesis H; is true give
some eviéence E is observed, P(E:H;) is the probability of the evid
given the hypothesis H; is true, and P(H;) is the a priori probabi
the hypothesis H;. The tikelihood of hypothesis Hy given same eviden
equal to the lii'cel ihood of the evidence given the hypothesis times th,
priori likelihood of the hypothesis divided by the sum of an
likelihoods for all possible hypotheses. If the a priori probabi
all possible hypotheses are equal, Bayes Theorem reduces to: :

P(E:H,)
P(H):E) = _E - (19) Speech perception, given such a sensory interface, would be an easy
> P(E:Hj) matter. Infants and children would learn to form speech categories on the

i
It can be seen that if each hypothesis corresponds to a partic
response alternative, the equation is similar in form to the pa
classification operation in the FLMP. The important guestion that re
is how different sources of evidence are combined according to:Ba
Theorem. Given two pieces of evidence E; and E,, the likelihood
hypothesis H; is equal to :

basis of these categorical differences (Blumstein & Stevens, 1981). Stevens
(1981) offers a number of distinctions in speech that might be conveyed
categorically rather than continuously. These distinctions include a rapid
amplitude change versus a slow amplitude change such as that which
distinguishes the initial consonants of chop and shop. However, there is
now good evidence that this distinction is not perceived categorically nor
is the nonspeech analog of stimulus rise-time (Cutting & Rosner, 1974; Hary
& Massaro, 1982; Rosen & Howell, 1981). Although Stevens (1981) provides
some nice insights into same likely acoustic features in speech perception,
there is no convincing evidence that these features are perceived
categorically (Hary & Massaro, 1982); Massaro & Cohen, 1983).

P(El and EZ:H]_)

P(Hl:El and Ez) =
2 P(E; and Ey:H;)
i
P(Eqy:H;) X P(Ey:Hy) Although categorical perception is often viewed as a very appealing
explanation of speech perception (Gleitman & Wanner 1982), it is unlikely to
be correct. One justification for the explanation is its simplification of
the speech recognition problem. As noted by Gleitman & Wanner (1982},
categorical perception of speech would provide the infant with the relevant
linguistic categories. However, categorical perception clearly is not the
case for all acoustic distinctions functional in speech perception. Vowel
guality, segment duration, and frication gquality are clearly
noncategorically perceived, and yet these distinctions have been shown to be
functional in speech perception. Thus, categorical perception cannot
explain all of speech perception, and there is no reason that it should
explain same of it. The theory that explains the noncategorical perception
of speech contrasts might also explain those few cases that appear to be
somewhat categorical. .

‘Zi P(El:Hi) P(Ey:H;)

Equation 20 follows fram probability theory in which the likelihood
joint occurrence of two independent events is the multiplicative camb
of the likelihoods of the separate events. The likelihood of two he
two tosses of a coin is the multiplicative combination of the likeli
a head on each toss. Given amultiplicative combination of indep
sources of evidence in the FLMP, it is identical in form to a prob:
model based on Bayes Theorem. In the FLMP, a parameter is estimat
each level of each source of evidence. The same would be true with e
to the probabilities assumed by Bayes Theorem.

The notions behind Bayes Thecrem seem to have a better justifi
for the subject's internalization of probability values, since pre
experience would determine the probability values. The same might
of the fuzzy truth values, but there has been no formalization:©

Other reasons to reject the categorical perception of speech come from
cross-language, learning, and context studies. Williams (1977) found
different category boundaries along a voice-onset-time continuum for Spanish
and English monolingual subjects. Did the different subjects have different
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natural categories as would be necessary if perception were categorica
do the results reflect simply the influence of language experience,
is, subjects must be able to learn to categorize graded sensory e
depending on how they are used to represent categories in the language
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VOWELS IN CONTEXT:
DYNAMICS, STATISTICS,
AND RECOGNITION

David J. Broad
1627 Bath Street
Santa Barbara, CA 93101

ABSTRACT

Vowels occur as dynamic gestures in the speech stream and their *‘steady states™ are
only fleeting and usually realized as reduced for perturbed versions of their idealized
“targets‘*. Fortunately, variability due to context seems to display some important regu-
larities: (1) Effects from preceding and following sounds seem to combine linearly to a
good approximation. These effects can be represented as initial- and final-context transi-
tion functions. (2) While such transition functions are not shaped the same for all conso-
nants, many of them are and there is some hope that they may be shaped similarly for all
vowels on a ‘“‘per-consonant” basis. (3) There is evidence that the vowel target under-
shoot may be directly proportional to the distance between the vowel target and the
adjacent consonant locus, with each consonant having its own constant of proportionality.
(4) Perturbation of the endpoints of vowel formant trajectories away from their respective
consonant loci may also be proportional to target-locus distance on a per-consonant basis.
(5) Undershoot is a decaying exponential function of vowel duration. The time constant
and scale of the exponential depend on the consonant.

The linearity of the combination of initial and final consonant gestures in CVC sylla-
bles has three major implications: (1) The description of formant trajectories is greatly
simplified. (2) Data bases for modeling CVC syllables can be built “additively™ from
data on CV’s and VC’s, avoiding combinatorial explosion of studying all C1VC2's. (3)
Such an “additive’’ data base provides a natural way to incorporate an unnormalized time
scale, thus providing a way to model duration-dependent dynamics. An implication of the
duration effects is that dynamic programming, or time warping without alternation of the
formant configuration, will introduce systematic errors into vowel patterns.

These ideas have so far only been developed and tested on a limited set of speakers
and languages with only a thin sampling of context and vowel combinations. Nevertheless
they seem promising and amenable to reasonably scaled data bases, which should let us
see how they work under a usefully general set of conditions and to determine how they
can be used to handle context effects in automatic speech recognition.
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1. INTRODUCTION

1.1. Coarticulation

It has long been known that vowel configurations are affected
context. Vowel characteristies change dynamically through the vowel ges’
and change from instance to instance as the vowel occurs in diffe
envirorments. This poses problems for simple methods for automaticivg
recognition. On the other hand, these variable characteristics
information about the vowel and the sounds adjacent to it. Therefop
seems likely that good ways to handle contextual variations of vowels 'sh
provide better recognition of both the vowels and their adjacent sounds,

The characterization of context phenomena is a fundamental prob
acouatic phonetics. Its solution involves the systematic examinatio
sounds in various contexts and the development of formal mode
characterize the results.

The generally accepted articulatory explanation for context effects
vowels is that each vowel has a certain "target" configuration toward w
the articulators will head from some preceding sound. Before this tar
be realized, the articulators will start to anticipate the following soun

and the vowel target will be undershot.

This dynamic explanation for context effects on sounds
called "ecoarticulation" because at any given time the articulator
acoustic configurations are functions not only of the "current” sound §
the preceding and following ones as well. That is, the current sound

naparticulated" with its predecessors and successors.

1.2. Acoustic Parameters
This paper deals with vowels and context effects in terms of
frequencies. This is in part Dbecause the foermants have been effec

parameters for describing vowels, and in part because of their conseq ant
as the "universal language" 1in which past studies have been formul
These past studies include nearly all the ones cited here. ;

There are many other acoustic parameters that ecan be, and are, _

speech analysis and which could be applied to vowels and coarticula
_Pols (1977) has done a nice study of Dutch vowels in CVC context us

parameters the principal components of the signal spectrum.

It would seem naive to expect that context effects might be bariis
the use of a different parameter set. What seems more compelling fo
of non-formant parameters is that formant tracking is such a diffiecu
still unresclved problem.. Given this, it becomes not only interest
necessary to study the pehavior of vowels in context using other pa

Regardless of the acoustic parameters used to study or recognize
in context, the same issues must be addressed: How do overlapping:
gestures combine in the acoustic domain? How can they be characteriz
simple forms? How can such knowledge of context-sensitive characteriStit
effectively used in speech recognizers? Since these gquestions.
independent of  the particular parameters used to represent
acoustically, what we learn below about the formant frequencies of OWE
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context should provide a useful framework for characterizing context effects
with any reasonable acoustic representation.

2. SINGLE-CONTEXT FORMS

2.17. Vowel Reduction

Stevens and House (1963) found that the short vowels /I/ and /U/ were
more subject to contextual shifts than long vowels, and suggested that this
meant that undershoot was related to the time available for a vowel gesture.

Duration dependency was studied systematically in one Swedish speaker by
Lindblom (1963), who measured vowel formant frequencies at the onsets, steady
states, and ends of vowels in the symmetric contexts /b--b/, /d--d/, and
/B==g/ . He elicited each item at L different speaking rates. The second
formant at the vowel midpoint, F20, was found to be well characterized by the

relation:

(1)
F20 = F2t + k(F2i-F2t)exp(-bT)

where k and b are constants depending only on the consonantal context, T is
the vowel duration in milliseconds, F2t is the target frequency for the
vowel ‘s second formant, and F2i is the second formant measured at the vowel

onset. For contexts /b--b/, /d--d/, and /g--g/ the values of ¥ were found to
be 5.0, 2.0, and 1.5, and those for Db were 0.021, 0.012, and 0.010,
respectively.

The second term, which represents the perturbation of F20 from the
target F2t, decreases in magnitude with duration. For a given context, the
size of the term is directly proportional to the distance between the target
F2t and the F2 starting point F2i. Undershoot therefore depends on the scale

of the phonetic gesture and on the time available for it.

The initial and center values of F2 show a remarkable relationship in
Lindblom’s data. Figure 1A shows these values plotted against each other for
a vowel duration of 150 ms. Within each vowel category, the realized center
frequency increases gently with initial frequency. It is easy to see how
vowel recognition would be confused on the basis of the center frequency
alone, For example, F20 of /a/ in context /g--g/ is nearly the same as that
of /®/ in context /b--b/.

The regular arrangement of vowels in the figure suggests the coordinate
transform shown in Figure 1BE. The D1 axis is the image of the straight line
fit to the /b=-b/ data in Figure 1A. D1 is distance along this line from the
point (820,600) in Figure 1A. D2 is distance from the D1 axis along a line
whose slope is the average of the slopes of the 8 vowel lines in Figure 1A.

VYowels are well separated by D1, except for /g/ and /Y/, which are

separated by their first formants. At the same time, most contexts seem
fairly well separated by D2 on a per-vowel basis.
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This example shows that even minimal attention to the dynamics
formant frequencies --looking at trajectory endpoints in addition £0.
vowel center point-- might be useful in handling context effects in automa

recognition.
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Figure 1A. Second formant at the vowel center F20 for a durati¢h
ms plotted against the second formant at the vowel onset, F2i, usin th
and model of Lindblom (1963).

376

2000 1
R
® &= | o b-b
® d-d
A g-g
lsoo?i kg, Y -
D1 (Hz) S—w —h—
1000 |- -
a
s v -
A _——e—0
@
500 |~ -
Cr—-d.;_. e be
clrL —— U
R .
0 500 1000
D2 (Hz)

Figure 1B. Figure 1A with transformed coordinates (see text).

377



2.2 Articulatory Mocdeling

Brman (1967) has formulated a coarticulation model at the level of voeal
tract area functions measured from x~-ray motion pictures of VCV utterances,

The model is of the form:

(2)
s(xst) = v(V,x) + k{tw(C,x) [e(C,x} - v(V,x)]

where s(xjt) is the vocal tract area as a function of the distance x along a
axis from the glottis to the lips, and of time t; v{(V,x) is the target are

function for vowel V; ¢(C,x) is a target area function for consonant  Cj:
w(C,x) is a coarticulation function for consonant C (it is a weighting on the
distance between the consonant and vowel targets), and k(t) is a function of

time denoting the extent of completion of the gesture from V to C.

2.3. Conceptual Similarity of Single-Context Forms

Equation 2 resembles term for term Equation 1 for Lindblom’s vowéi:
reduction results: As illustrated in Table I, each involves a vowel target:

added to a perturbation term which is a product of an inter-target scale,

consonant-dependent scale factor, and a "dynamic" factor involving durati
or time. Although the equations are formulated for different domain
formant frequencies and area functions, they share strong conceptu
similarities involving hypotheses of per-consonant similarity of gestures an

distance-proportional scaling. These notions will be taken up again in

Sections 4 and 5.

Table I. Structural correspondences between Equations (1) and (2),
which are, respectively, Lindblom’s (1963) formula for F2 vowel-target
undershoot and Uhman’s (1967) coarticulation model for vocal tract area

functions.

Lindblom (1963) Obman (1967)

Term Eq. (1) Eq. (2)
;;;z;;;;-aonfi;;;ation F20 s{x;t)
Vowel Target Fa2t v(V,x)
Locus-Target Distance F2i - F2t e(Cyx) - v(V,x)
Dynamic Factor exp(=-bT) k(t)
Consonant-Dependent k w{C,x)
Scale Factor
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2.4. Effects of Consonant Features

2.4.1. Consonant Features As Additive Effects. Stevens and House
{1963) found systematic effects on vowel formant frequencies attributable to
the features of voicing and place and manner of articulation of the
influencing consonant. Voicing usually moved F1 down, possibly because of
larynx lowering. For F2, fricatives had greater perturbing effects than
stops, possibly because they require more precision of movement and therefore
more time than stops. The labial consonants tended to have greater effects
on F2 than did consonants with other places of articulation. These results
suggest that coarticulation might be resolved into separate effects from the
consonant features. If s0, it would be desirable to express these effects
gquantitatively.

Purcell (1979) has pursued this notion by representing additive
consonant effects as linear combinations of effects of conscnant features.
He measured the formants in Russian VCV utterances and found that the
consonant effects were characterized by relations of the typical form:

(3)
F2(TV1) = 322 - 277(front/back V1) + 1.041(place of art)

+ 290{pal/unpal)

In this example, Purcell relates the second formant measured at the
vowel-to-consonant transition for the initial vowel (TV1). The parameter
nfpont/back V1v is set equal to 1, 2, 3, U, or 5 for /i/, /e/, /a/, /o/, oOr
/u/, reapectively. "place of art" is set to 1423, 1834, or 1637 for /b/,
/d/, or /g/, respectively. "Pal/unpal” is set to 1 for an unpalatalized
consonant and to 2 for a palatalized one. The values of the coefficients and
the parameters are determined for a best fit to the data.

Models of this general form fit the F1 data very well: rma errors were
near 20. Hz. The fits for F2 were not so good; rms errors were around 225
Hz. Nevertheless, most (66-80 percent) of the variance was accounted for.
Significant improvements in this type of model might be expected if the
constraints of the language mentioned by Purcell were incorporated. For
example, some items of the script were for non-occuring sequences in Russian
and were uttered as the nearest occuring sequences. This shows that
coarticulation models cannot be expected to pick up much of the burden more
properly carried by phonological rules.

2.4.2., Palatal and Velar Allophones. Models of coarticulation will
indeed run 1into trouble unless phonological rules governing allophone
selection are first taken into account. An example is the conditioning of
/k/, /g/, and /y/ in English by the horizontal place of articulation of the
adjacent vowels: 1In the context of front vowels these sounds are realized by
their palatal allophones, and in the context of back vowels by their velar
allophones. One way to handle this would be to treat these allophones as the
different consonants that they are at the phonetic level. One would then
include phonological rules in the model to select the apprepriate allophones
depending on the frontness or backness of the contextual vowels.

These sounds may actually behave in a more complex manner. Houde (1968)
has made x-ray motion pictures of VCV utterances in which he observed that
the closure for /g/ was accomplished mainly by a vertical tongue=body
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movement, with the horizontal place of closure representing a cont
conditioned by the horizontal place of articulation of the contextual.
Thus it seems 1likely that the discrete form of a simple phonological
might more realistically have to be represented by some continuous funect

Ohman (1967) has suggested that this might be accomplished for /g
the formalism of Equation 2 by having the /g/ target area function ¢
depend also on a "velar/palatal" parameter which would be set equal  to
parameter q2, which c¢an be interpreted as a back=front parameter
adjacent vowel 3sound. The target function would then have the:
c{/g/,4923x). This appears to agree with Houde’s observations.

A continuous conditioning of palatal and velar consonants . by
adjacent vowel is an example of coarticulation effects of vo
consonants. Whether a given conditioning phenomenon should be modeled

phonolegical rule of assimilation or as a coarticulation effect would
on how it can actually be observed to behave in a bedy of data.

In general, the articulations of bilabial, alveolar, and palatal
velar consonants involving complete oral closure have mechanisms and deg
of freedom that differ considerably from each other: 1In the bilabial. sou

the entire tongue body is free to assume any shape Or position75ﬁ'
closure; in the alveolar sounds the apico-alveolar contact place:
nfixed-end” constraint on the tongue; in the palatal and velar sounds

tongue is, as just noted, apparently free to adopt any of a wide cho
' horizontal places for closure. Such differences of mechanism may u de
the necessity for abandoning notions of universal shape similarities
proportionalities of scale in favor of "per-consonant" versions :
notions, as discussed later in Sections 4.3 and 5. o

3. SUPERPOSITION OF PHONETIC GESTURES

3.1. Initial Formulation
3.1.1. Whole Gesture Versus Center Sample. Without data ‘on
contexts, it is impossible to determine how much of the vow

undershoot to attribute to the initial context and how much to the
Also, it is desirable to measure more time samples of the
trajectories to study how the balance among initial context, final

and vowel target shift from beginning to end of the vowel. More.:

allow the whole formant trajectory to be characterized as a phonetic ges
From this point of view, it is the whole gesture and not just. the
midpoint or steady state that is most useful for characterizing the Pl
category of the vowel. Because the center or steady state value's
undershoots the vowel target, this single sample by itself can be f':
and can be given its proper phonetic interpretation only when it is.8
part of the trajectory, the trajectory that contains information:
degree of undershoot, and hence on the vowel target. If a vowel
characterized by a single set of formant frequencies, then, it woul
to be better to use the targets than any single sample of the freq I
actually realized during the course of the vowel s phonetic gesture
then the job of a recognition-directed coarticulation model to spec
mapping of vowel gestures onto vowel targets. It will also be S
gection 4.2.2 that more time samples of the formant trajector
capture more of the phonetic information carried by the formant contou
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Stevens, House, and Paul (1966) embodied the whole-gesture idea by
sampling vowel formant trajectories every 8.3 ms through the vowel gesture in
CVC utterances. These trajectories were then fit by segments of parabolic
arcs.

3.1.2. Separating Initial and Final Contexts. Broad and Fertig (1970)
pursued the separability of initial and final contexts by studying a single
vowel in a variety of initial and final contexts. Fertig (1976) has
desceribed the details of measurement and segmentation. The utterances were
the 576 possible C1/I/C2 syllables made up of combinations of 24 C1°s with 24
¢2‘s. Each context was recorded 3 times from a single speaker. Finally, the
whole-gesture idea was incorporated by sampling the first three formant

frequencies of each vowel at 11 equally spaced time points.

3.1.3. Analyses of Variance. Two-way analyses of variance of the vowel
formant data provided a senaitive measure of the effects of C1 and C2 on the
formant frequency trajecteories. These analyses are summarized in Figure 2 in
which the F-ratios (in the wusual statistical sense of variance-estimate
ratios, not formant frequencies) for F1, F2, and F3 (formants!) are plotted

as functions of time for the C1 and C2 main effects and for the C1-C2
interaction. All three formants show the same pattern: The C1 main effect
decreases with time as the C2 main effect increases. The two sets of main

effects make an X-shaped pattern in the plot. Even where the main effects
are the weakest, at their trans-vowel boundaries, they are much larger than
the interactions, which are the more or less horizontal functions at the
bottom of the graph. This shows that there is both "memory" of C1 and
nanticipation® of C2 throughout the vowel duration.

The F’s for C1-C2 interaction are highly significant statistically, even
though they are numerically swall. For simplicity, C1=-C2 interaction terms
are omitted from the model that f{ollows. Though this is not strictly
justified, the model turns out to be fairly robust under this departure from
rigor, which, according to Broad and Fertig, increases the rms error of the
model by an average of only 15 percent. The maximum increase in error is 32
percent, which occurs for time point 4 of F3. Figure 2 shows that this also
corresponds to the highest value for the C1-C2 interaction F.

3.1.4. Linear Model. The analyses of variance lead to a very simple
coarticulation model in which the effects of the initial and final contexts
combine additively throughout the vowel duration. The model is given by the

relation:
{u)
F(C1,C2,i3t) = T{i) + £{C1,ist) + g(C2,i3t) + X{izt)
where F(C1,02,13t) is the ith formant-frequency trajectory for /I/ in the

context of consonants C1 and C2, T(i) is the ith target frequency for the
vowel /I/, f£(C1l,ist) 1is an initial-consonant transition function for
consonant C1, g(C2,ist) is a final-consonant transition function for

consonant C2, and time t is normalized to run from O to 1 from the Dbeginning

of the vowel to its end. The 11 equally spaced points therefore correspond
to times t = 0, 0.1, ..., 0.9, 1.0. The final term X(iz;t) is the error in
the representation. It 4is a zero-mean nearly-gaussian random variable,

composed mainly of random variations among repetitions of the script items by
the speaker along with some measurement noise. 1t also contains a relatively
small component attributable to the ignored interactions between C1 and C2Z2.
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Figure 3 shows how the model in Equation U4 works. The figure, which is.
the best one I have seen for explaining the model, was drawn by Dennis Klatt
using the data and model in the study by Broad and Fertig. The horizontal
dashed lines represent the targets for the /I/ formant freqguencies. The
curves in the top two graphs show initial and final consonant transition
functions for a small subset of the consonants studied: /b, d, &/. The -
transition functions for each Fi are drawn using their respective target’
frequencies as baselines. Thus they represent idealized C/I/ and /I/C:

trajectories. The bottom graph shows how the formant trajectories for the
sequence /bId/ are constructed by superposing the F1, ¥2, and F3 £’s for /bl 2300 o 1< I< i ,
and the respective g’s for /Id/. Alsc shown is the actual average trajector * .
measured from three tokens of /bId/ in the data. b ..
The fit between the model and the data is quite good. Indeed, the rm ' .
errors of the superposition model are only slightly larger than the rms. 2200 - . . . .
variation among repetitions of the same item by the same speaker. (Th 1 . .
increase is due to the omission of the C1-C2 interaction term in Equation b,y I . S ST X R L A . ITA
That is, the model is nearly ideal in conaideration of the 1limits on th : . AL B ' *
human talker s ability to reproduce a given pattern from time to time. ' . : ST, T )
: 2100 4 B I N Y ';f:: L
3.1.5. Cluster Contraction. To see how this kind of model might ai .o T S T |
automatic vowel recognition, consider the special case in which we know C RO I EUAAPIAE Y. PR R A .
and C2 beforehand. Then if Fi is a formant frequency measured at the Vo M BRI LA S K AR L.
midpoint, t = 0.5, the corresponding target Ti can be estimated from Equat £E§ R e ;5:;?.{5‘251 _fi;gi' b A
° " . sd ap 4 s 0 d . B Tag MII L e, .
4 as: 2000 . : e e -._...:-.;_:: '.::.:-,-;:.l:‘:i-:l:';-:; .' 4 . ." .
(5) . = U TR RIRIELTS -".::',-i::"-'f":?;: "_:.:“E: . )
T(1) = F(C1,62,130.5) - £(C1,130.5) - §(C2,1;0.5) - T e :'ﬁ:éﬁ’.?yf}.‘-f"{:‘f:.'?':
. g LY i, WSy " .
U 9004 17 ' T BErtto S SR SHEN NS t
- St ':*"'f'qqh¥+ﬁv$-hﬂk—*———h—————
Figure 4 shows the result of this operation on the /I/ data. Figure. . f'¢'~-3¥]. 5;'3*537341“':f,,:."
shows the first two formant frequencies actually measured for the cen o .-r'"E:_r§5;.§;§.¢§-;f;ﬁ:'f A
point of the vowel /1/ for all the 1,728 tokens. As mentioned above-in ' SRS 3 X ity .
Section 3.3.1, there is no reason to consider the center or steady state : ,'_f”;if e:.iﬁzj'_f. Nelo e e :
formant values to characterize the vowel’s phonetic category. In this cas 1800 - RS (AR P S
the center value is distinguished from the others in that it has small —< o e e s . <A
variance than any of the other time samples. Figure 4A therefore shows t I PO T A e - €
most compact distribution of formants for /I/ that can be obtained fr . NIRRT
single samples of the realized formant frequencies. _ : e | _‘_ EILIh o] - )
. . . . i 1700 - o i et
When Equation 5 is applied to each point in this plot, Figure #B. i - .o, . "
obtained. Clearly it is a substantially tighter cluster than the one *e- } .
Figure U4A. It represents the distributions of the error terms X(1;0.5)  an - T .Ihv. . eh
X(2;0.5) from Equation 4. Subtracting the transition functions thus may be : ’ . [ :
an effective method for estimating vowel targets, provided we know which on 300 350 400

to subtract! In a pure phonetic sense, it is also seen that the estimates
targets provide a better acoustic characterization of the vowel than do
realized center frequencies.

This illustration is a long way from being a practical recognit
technigue. Besides needing to know C1 and C2, one really needs to know tha
the vowel is /I/, as f and g in Equation 4 have been constructed only . f
this vowel. This does not mean, however, that a more general coarticulatl
model will suffer the same limitation. Indeed, it is to be hoped tha
will not and will achieve results such as those shown in Figure U witho
having to know the phonetic units in advance. Our ability to do this wi
depend on knowing regularities of contour shapes and scales, noticns t
reviewed below. In particular, it will be shown that shape similarity -amon

Figure 4A. Second formant frequency plotted against the first for the
actually realized vowel centers of the 1,728 tokens of /I/ in the data of
Broad and Fertig (31970). From Broad (1976). Reproduced by permission of S.
Karger AG, Basel.
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transition functions would be one factor that would allow the vowel target to
pe estimated solely from samples of the realized formant contour.

The lesson of the presemt example is: There exists systematic structure
in vowel parameters attributable to context. It is up to us to find a way to
characterize and exploit this structure.

These data and the coarticulation model for them were derived for just

this one vowel for this one speaker. Nevertheless, they are the starting
point for a new study that is just getting under way.

3.1.6. Applicability to Other Vowels. There is some indication from
the literature that additive consonant effects might characterize the steady
states of other vowels. Ohman (1966) measured the vowel formant frequencies
in 375 Swedish VCV utterances (5 repetitions X 5 initial vowels x 3
consonants x 5 final vowels). He found that the vowel formant frequencies at
the consonant boundaries were affected by the trans-consonantal vowel. The
effect seems to be significant even after an error in Onman‘s statistical
reasoning is allowed for: The effect was tested by computing the mean
poundary values for each of the 5 trans-consonantal vowels and then applying
Student ‘s t-test to the two means that were most different. Selecting the
extreme values after the fact biased the test toward a significant result.
Nevertheless, the claimed coarticulation of the vowel with the
transconsonantal vowel does seem to be present (Broad, 1972}, and it would be
interesting to construct a statistical model of Ohman’s VCV data along the
lines of Broad and Fertig’s model.

For our present purposes, it is useful that Onman’s vowel data are given
in enough detail (his Table II) to caleculate approximate 2-way analyses of
variance of the data classified by vowel and by associated consonant. The
results of these analyses are condensed in Table II, where it is seen that
the F-ratios (F again in its statistieal sense) for interaction between vowel
and consonant are generally either not signifiecant {F1) or small in relation
to the main effects of the vowels and conscnants (F2 and final-position F3).

Table II. F-ratios for analyses of variance of the vowel formant data in
Ohman’s (1966) Table II. Separate analyses for vowels in initial and final
positions in the VCV sequences are given.
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Figure 4B. The corresponding F1 and F2 target frequencies esﬁimat
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This suggests that most of Ohman’s vowel steady-state data can be representg
by a simple additive model similar to Equation 4 in which only the transi
function for one nearby consonant is needed: .”

(6)
F(V,C,i) = T(V,i) + f(C,i)

where T(V,i) represents the ith target frequency for vowel Vv, and f is
consonant-related perturbation. T(V,i) is computed for each vowel:
F(V,C,i) averaged over all consonants C; f(C,i) is F(V,C,i) - T(V,
averaged over all vowels V for each consonant C. Time is suppressed a
variable in Equation 6 because the published data are for only single -
samples in the vowel steady-states.

The results of constructing the model in Equation 6 are summarized
the top row of Table III which shows the rms errors in estimating
targets for each CV or VC combination in Ohman’s table by two dif
methods:

(A) T(V,i) is estimated by the realized freguency F(V,C,i).

(B) T(V,i) is estimated by subtracting the consonant perturbationffﬁ
from each realized F(V,C,i). C

The success of the model is shown by the reduction in rms erro
method (A) to method (B): by Uu8, 58, and 31 percent for F1, Fz,
respectively.

The bottom row of Table III gives the corresponding rms errors
scatter plots for the /I/ data shown in Figure 4. The results seem to
comparable to those just described for Ohman’s data, as in each case
error is substantially reduced by subtracting consonant effects from realizel

frequencies.

There is therfore some indication that additive context effects app.
situations more general than the single vowel /1/ studied by Broa
Fertig. E

Table III. Rms errors in Hertz of vowel targets estimated via:
(A) realized steady-state formants, and (B) subtraction of consonan
dependent perturbations. '

- - ———

Formant 1 2
Method A i B A ;- A
Study o T
Ghman (1966) T 13.1 6.8 38.6  16.3 49.6
Broad & Fertig (1970) 22 16 105 63 10&1
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(A) WRONG WAY
FORMANT TRANSITIONS TRANSITION FUNCTIONS
Fey, (1) fey, (1)
H
o-—— ————— =
CVi-s
|
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t (NORMALIZED)

Figure 5A. (Right) Assumed global consonant transition function for
consonant C. (Left) Resulting set of formant trajectories for consonant C
going into five vowels, Viyeeas¥o,

3.2. Extended Superposition Model

3.2.1. Need for Vowel-Dependent Transition Functions. Equation 6 might
raise the hope that a coarticulation model might be very simple indeed: that
a given consonant might have the same additive effect on each vowel. Table
TIIT suggests that this will succeed for the vowel steady state. There is,
however, a simple reason that consonant transition functions as used in
Equation 4 will have to be different for each vowel. Figure 5A shows how
formant trajectories would look if a given consonant had a fixed tranaition
function for all vowels. The trajectories on the left correspond to the
single transition function shown on the right. The trajectories would all be
parallel to each other, and their endpoints at the consonant boundaries would

be displaced a constant distance from their respective vowel targets. This
is not at all the picture suggested by experience. Instead, we expect
formant trajectories and their associated transition functions to look

something like the schematic shown in Figure 5B.
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(Left) Schematic of m -
. ore realistiec forms for yiit:
rajectories for consonant C going into different vowels V1,...,Vg?rma

onset
transit?g: dgszzti;;:?rd aadiiﬁcus L. (Bight) The corresponding set
ore : erent function is needed for C going into:

~ Figure 5B embodies the notion that the formant j i zi
initial consonant will all be pulled toward some 1223ge::ggz§;t£grwithsth
consonant. This is quite different from the situation shown in Figure 5“'.
shows. ?hy each combination of vowel and consonant must hage its
trans;tlgn function. Consonant C is associated with locus L and t;e*
vowel v; iz associated with target T(Vj), though L and T(Vj) ar
necesgarlly exactly realized. The total gesture trajectory is denote
F(C,?J;t). The transition functions, in the sense of Equati L
obtained from F(C,Vjst) via the vertical translations: s o .
£(C,Vist) = F(C,Vizt) - T(V]) i
H J '
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3.2.2. Model. The conceptualization shown in Figure 5B suggests a
1inear model that is a slight generalization of Eguation 4:

(8)

where F(C1,V,C2,13t) is the ith formant-frequency trajectory for C1VC2,
T(V,i) is a target frequency for vowel V, f£(C1,V,ijt) is an initial-consonant
transition function, but now indexed by the vowel V as well as by the
consonant C1, and g(V,C2,ij;t) is the corresponding final-consonant transition
function. Time t can either be normalized to run from 0 to 1 or unnormalized
to run from 0 to the vowel duration 7. The latter case involves a refinement
discussed below in Section 5.4.

The model could become unwieldy if all the transition functions, one for
each CV and VC combination, turned out to be unrelated to one another. We
expect that this will not be the case. Indeed, the idealization in Figure 5B
suggests a hopeful aset of hypotheses: that the transition functions form
simple families of curves, all of the same shape and hence characterized by
their scales and positions. The scales and positions in turn would behave
predictably from their associated consonants and vowels. This set of
acoustic hypotheses is an analogy to the locus theory developed at Haskins
Laboratories in the 1950°s (Delattre, Liberman _and Cooper, 1955), hence
Figure 5 resembles those used to illustrate that theory. The hypotheses
naturally break down into shape hypotheses and scaling hypotheses, which are
taken up in more detail in Sections 4 and 5. First, we will examine some
implications of the linearity of the model.

3.3. Additive Versus Multiplicative Data Bases

3,3.1. Avoiding Combinatorial Explosion. There is a fortunate spinoff
from the linearity of the way that the initial and final contexts interact:
this means that a data base for studying coarticulation can be built up in an
nadditive" rather than a "multiplicative" mode. Before we had any evidence
that superposition could work so well, it was conceivable that it would be
necessary to study all possible combinations of initial and final contexts.
Thus for the 24 initial and final contexts measured by Fertig (1976), it was
necessary to look at all 576 (=24x24) combinations. Now that those
measurements have shown the relative adequacy of a linear model, i.e., that
CVC’s can be built up by adding CV’'s and YC’s, it should be possible to
derive the same sort of model from a suitable collection of VC and CV
sequences. Then, for example, the 576 contexts could be built up from a
seript of 24 CV and 24 VC sequences: only 48 items. This represents a
reduction in seript size by an order of magnitude and indicates that even
comprehensive coarticulation studies need not suffer combinatorial explosion.

3.3.2. Implications for Time Scale. A normalized time scale in
Equation Y4 was dictated by the necessity for a uniform way to analyze cve
utterances of varying durations. The normalization accomplished this by
aligning the V’s to all start and end at the same normalized times (t=0 and
t=1). As noted by Broad and Fertig, there are reasons to prefer an absolute
or unnormalized time scale.

Figure 6 shows the problem with a normalized time scale. It shows two
different ways to "warp" the formant trajecory on the left to a different
duration, with the results shown on the right. The one labeled "wrong way"
is the original trajectory replotted on a linearly squeezed time scale.
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e — —
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RIGHT
WAY

Figure 6. Two ways of normalizing a formant trajectory to a diff
duration. "Wrong Way": the trajectory is normalized by a linear scalin
the time axis without altering the frequencies. "Right Way": jac
is normalized by both a linear scaling of the time axis and by adjustme
the vowel-target undershoot and to the consonant-locus perturbations accoy
to duration dependencies cbserved in speech production.

Nothing has been done to the frequency scale. Yet from Lindblom s stud
know that vowel target undershoot is a function of duration. Also, as
be seen later, the endpoints of the trajectory might bDe expected
perturbed differently for different durations. The frue
rherefore better represented by the scheme labeled "right way".
addition to the linear compression of the time scale, the trajectory h
warped in frequency to adjust the target undershoot at the center an
locus perturbations at the endpoints. This could be realized by u
transition functions in Equation 8 that are truncated rather
time-normalized to a needed duration. Truncated transition functions
discussed in Section 5.4.

The difficulty just described shows that time normalization Dby . itse
does not realistically characterize the acoustic configurations of vout
uttered at different rates. This poses a theoretical and methodolog
problem for using data bases of CVC syllables for studying coarticulat
It also stands as an objection to the usual methods of time warp
dynamic programming used in speech recognition.

speech recognition, dynamic pro
attempts to prepare an utterance for comparison with a template by &
or non-linear warping of the time axis to synchronize events in th
with comparable events in a template. As has just been seen, NO
warping only the time axis without taking into account the way that  __
are changed by different timings leads to an incorrect picture of the fo:
trajectory. Dynamic programming Wwill therefore introduce systemati
into vowel patterns. It is sometimes thought that template matching to
utterances is a way to avoid problems connected with fine phoneticﬂ‘d
The force of the present argument, however, is that dynamic programmir
not avoid the problems posed by coarticulation. Some way of han
coarticulation will ultimately be needed if we are ever to do realistic
warping, that is, if we are ever to do it the "right way" shown concept
in Figure 6. s

As it is usually applied in
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Figure 7. Schematic time alignments of vowel data. (A) CVC syllables

A11 items are thereby normalized to
segmentation

aligned by both onsets and terminations.
a common duration. ({B) CV and VC syllables aligned by only one
polnt. No time normalization of duration is involved.

a methodological difficulty

This problem with time warping alsc poses
To treat a body of data

for using CVC data bases to study coarticulation.
statistically, one must decide what items are to be grouped together. This
is a decision about which measurements are to be copsidered comparable. In
using a normalized time scale, one groups together measurements made a
certain fraction of the vowel duration from the vowel onset. In an
unnormalized time scale one groups together measurements made many
milliseconds from some event, such as a segmentation point.

50

In a body of CVC’s consisting of all combinations of initial and final
consonants, it makes conceptual sense to ask about the average behavior of,
say, F2 at 80 percent of the way from the onset to termination of the vowel.
It seems to make less sense to ask about the average behavior of F2 at 100 ms
after the vowel onset: Owing to duration differences, this could be near the
vowel midpoint, its termination, or even into the final consonant. Not only
would such an F2 average be more variable than one taken 80 percent of the
way through the vowel, but it would be harder to interpret conceptually.
Therefore time warping to a scale of percent or fraction of vowel duration
seems to0 be the only way to make statistical and conceptual sense of a civez
data base. This is so in spite of the theoretical difficulties just outlined
with normalized time scales.

A C1VC2 data base would evidently then have to be prepared for
statistical treatment by simultaneously aligning both the C1-V and V-C2
boundaries as shown conceptually in the left column of Figure 7.
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2, Universal Similarity

4.2.1. Hypothesis. The simplest hypothesis would be that f# for all
he initial-consonant transition functions f(C,V,ijt} will be the same to
within some error that {#5 close to the inter-repetition variability.
jmilarly, it would be hypothesized that the final-conscnant transition
functions g(V,C2,1i;t) will map onto nearly the same g*. This type of
pnormalization by extrema has been successfully used to map
fundamental-frequency contours by different speakers onto each other (Earle,

A way out of this difficulty would be to structure the data bas
a way that comparisons of events measured at the same unnormalized
would make conceptual sense. This might be done by taking advantage
expected linearity of the effects of C1 and C2 in C1VC2 sequerces

linearity allows us to study the C1 and C2 effects separately throdgh
base consisting of CV’'s and VC’'s, This has already been discussed
advantage in reducing the scale of a coarticulation data base. As
the middle column of Figure 7, the CV's can be aligned by
boundaries. Their other ends, the V terminations, are then left fre
at their respective vowel durations. Now repetitions of a CV or instane
different C’s going into the same V can be compared or treated statis
without normalizing the time sacle, because now, without the complicati
a variable final context, it does make conceptual sense to ask what: haﬁ
on the average, so many milliseconds after the C-V boundary.

h,2.2. Implications. 1f the universal same-shape hypothesis were
‘ponfirmed, then the general coarticulation model for CVC syllables would be
‘sonsiderably simplified. To see this, let Equation 8 be rewritten using the
“aytpemum parameters and the nypothetically-known functions f* and g¥*:

(10)
F(t) = T + £#{t)[{fmax-fmin] + fmin

In a similar fashion, the VC’'s can be aligned by their V-C bo + g*(t)[gmax-gmin] + gmin

as shown in the right column of Figure 7. Now nothing is dene to alig
vowel onsets. -

An automatic speech recognizer might have F(t) as a formant trajectory
‘measured from incoming data. If f% and g% were known functions, then
'Equation 10 would be linear in the "unknown" targets and extrema: T, fmin,
‘fmax, ‘gmin, and gmax. These parameters could therefore be estimated from 5
‘time samples of the trajectory. The four extremum parameters could be used
to reconstruct the initial- and final-consonant transition functions. These
contain all the information that the formant trajectory has to offer about
the consonantal contexts.

To generate a model of the form of Equation 8, the f’s are built up
averages of the respective CV’'s and the g’s from the VC's. To model a GV
a given duration, the f’s and g's are time-truncated to the desired’’ :
before being added according to Equation 8. '

The use of time-truncated transition functions involves an inte
hypothesis about the behavior of formant patterns. This is discussed
in Section 5.4. For the present, the point is that an nadditive" dat
of CV’s and VC's is not only economical in scale but seems to prov
natural way to analyze context effects in items of variable duration ::
having to warp the time scale. :

Equation 10 can also be used for a least-squares approximation if a
~larger number of time samples of F(t) is available. This would of fset
. systematic and random errors due to measurement noise, inter-repetition
variation, and residual deterministic error in the the model. The latter

4. CONTOUR SHAPES . component might include departures from the same-shape hypothesis.

The least-squares analysis results in another system of 5 simultaneous
linear equations in the unknown parameters. The deterministic and
least-squares formulations jead to similar computational forms in which the
5x5 matrix needs to be inverted only once for all time, as in each case the
matrix elements are all constants depending on f* and g*. Therefore the
nper-vowel" computations would involve only matrix multipications and no
matrix inversions.

4.1. Shape Similarity

By hypothesizing the transition functions to be of the '"same shap
have to select one from the several equivalent formulations of simi
One very simple one is to say two curves are similar if one curve
transformed to another via a scalar mapping. A convenient form is &
all the transition functions to extreme values of 0 and 1. Letting £t
g(t) be =ingle curves of the families, the respective canonical form

. The vowel target and consonant transition functions could therefore be
and g*(t) are given by:

estimated simultaneously, thus bypassing a familiar quandary: If we need the
consonants to recognize the vowels, and vice versa, which do we do first?

* - _ . _ .

£r(t) = [£(t) fmin]/{fmax fminj The technique just outlined is not symmetric with respect to the vowel
*(t) = [g(t) inl/1 in] and the consonants. The estimation procedure gives an explicit result for
g = L& - guinl/lgoax - gmin the vowel target T, and each vowel is expected, for a given speaker, to have

a unique value of T associated with it. We are not so lucky with the
consonants, because for them we obtain only estimates of their transition
functions. As discussed above, each consonant will have not a unique
transition function, but a collection of them, one for each vowel. Therefore
the estimation technique is still = step away from providing a unique
consonant target or locus. I+t still provides information about the
consonants, but not in quite as neat s form as it does for the vowel.

where time t is normalized to run from O to 1, and fmax, fmin, gmax and
are the respective maxima and minima of £ and g. In this form, fmin and
are mapped onto 0 and fmax and gmax onto 1. :
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It will now be shown that this technique will not work in
because the premise of universal shape similarity is not true..
however, a constructive lesson to be learned from the present example;
well within the scope of imagination that a coarticulation meod
nicely enough structured to allow phonetically significant non-cber
such as targets, to be quickly estimated from samples of observable :
realized formant frequencies. It is the phonetically si
non-cbservables that would be most useful for automatic phonetic reco

VOWEL /1/
INITIAL CONSONANTS
FORMANT 2

4.2.3. Counter-Example. Unfortunately for the hopes Jjust outli
data from Broad and Fertig show that tramsition functions for various
consonants going into the vowel /I/ have different shapes. To see t
that if transitions were of the same shape, then the re-write of Equ

with normalized time t=0.5: - | ///
et m -
= -100} .
£(C130.5) - £(C13;1) = K®(0.5){f(C1;0) - f(c1:1)] w b /ﬂe //
. -
where 0 3]
RS(L) = [£#(0)-C¥(1)1/[E(E)-£2(1)] g " 5/ ¢ B
: - -I150F )
Equation 11 is a straight line through the origin with slcpe K#({
Figure 8 shows the second-formant £{0.5)-f(1) plotted versus f(&
for all initial conscnants Cl. Clearly the data do not fall on
straight line. The data do, however, fall into four interesting:
(A) /w,r,M; (B) /h,p,t,k,j,[ﬁ/; (c) /#b,d,g,m,n,f,v,8,%,3,2, -200 ! l
(D} /y/. These will now be discussed in order. ' ~-1200 -800 -400 0

(A) /w,r ™. f(0) - £(1) {Hz)
These consonants involve all the large total F2 trans
(1fmax-fminl > 900 Hz). They also involve high initial slopes (|dF2
250 Hz per 0.1 vowel duration). They do mnot, however, involve uz
large contributions to the vowel-target undershoot, essentially £{.5)
It may be that the undershoot at the vowel center "saturates" fo
values of fmax-fmin. :

Figure 8. Second-formant difference £(0.5)-£(1) between the vowel
center and its termination plotted against the second-formant difference
£(0)-f(1) between the vowel onset and its termination for  the 2y
initial-consonant transition functions from the data of Broad and Fertig

(B) /h,pst,Kyd,§,3/ {1970).

This grouping of conscnants in Figure B8 is fairly well fit by the
£(0.5)=-F(1) = O 42[F(O)=-F(12] - T7

Except for the 77 Hz vertical displacement, this would be con (C) /s¢,0,d,8,m,n,f,v,8,¥,5,2,1/

i 11 ®(0. = D.42. ] .
with Equation 11, with K*(0.5) This set of 12 consonants plus silence (/#/) is fairly well represented

The production of /h/ and the aspiration of /p,t,k/ involve an int by the line:

of turbulence noise generated at the glottis, which leaves the supra=gl
articulators free to anticipate the vowel. The sonorant /J/ has a
near to that of /I/, again suggesting some sort of substantial anti
of /I/ during the consonant. If this is a real grouping of consonantsy,.
not too c¢lear why the homorganic sibilants /§,3/ should be included
their production can be accomplished with some extra freedom of the
shape that would again allow the /I/ to be more freely anticipated durin
consconant . :

(12b)
£(0.5)=£(1) = 0.42{£(0)-£(1)]

This is the form of Equation 11 with K*{0.5) = 0.42. The same-shape .
hypothesis might therefore be supported within this subset of initial
consonants. The universal same-shape hypothesis, however, apparently must be
abandoned in light of the totality of these results.

396
397



o /o/

This consonant is by itself between groups (B) and (C}. Perhapa
behaves differently because in English, the. speaker s native language
never occurs in syllable-initial position.

Groups (B) and {C) seem to be fit by lines of the same slope and the
groups, which together contain 20 of the 24 contexts studied, seem to diff
in some sensible phonetic dimension, a dimension perhaps of consonant
anticipatory freedom.

That there is some regularity to the relationship among £(0), f{
and f(1) for the various consonants suggests that even with the univ
shape-similarity hypothesis rejected, there is perhaps socme hope for
econcmical representation of the f's and g’s for the various consonant a
vowel combinations, perhaps by a small collection of shapes rather than
one universal shape. Alternately, it might be found that a single shape: wi
serve if it is allowed to be truncated or cut back in duration
consonant-dependent way.

4,2.4, Another Counter-Example. The results from Lindblom's s
summarized above by Equation 1, also contradict universal shape similari
that the inverse time-constant b varies from context to context. Wit
context, however, the perturbation term of Equation 1 does describe a f
of similarly shaped curves, differing only in scale. :

4,3. Per-Consonant Similarity

These counter-examples deo not yet contradict the hypothetical not
illustrated in Figure 5B, which suggest that the transition functions f
given conscnant into or out of various vowels might follow trajectories
similar shape. Figure 8 shows that the converse is not true: that“f
given vowel, the transition functions for the different consonant
differ in shape. It will therefore be interesting to test a more special
hypothesis: that for a given consonant ¢ the f and g functions will
the same shape for all vowels V, i.e., that the r% and g% functions_ﬁl
nearly the same in a "per-consonant" sense, As just noted, Lindbl
results are consistent with the notion of per-consonant similarity. i

Similarly, Equation 2 for Ohman’s articulatory model of context 'éf”
also suggests a per-consonant similarity of gestures in that it is fo
similar to Lindblom’s.

4.4, Closed-Form Representations
It would also simplify the coarticulation model if the f's and g3
be represented in closed forms. Parabolic (Stevens, House, and Paul,

and exponential (implicit in Lindblom, 1963) forms have been used .1
constants that characterize such forms then become paramet

past. Any
interest. For example, Stevens, House, and Paul studied the syst
behavior of the “curvature parameter" of the parabolas they fi

formant trajectories.

representation of g

closed-form ;
Beyond

The first requirement for a

trajectories or transition functions is that it fit the data.
one would hope for other desirable properties, such as the
recoverability from measured formant contours of the separate
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corresponding to the vowel target and to the initial and final transition
functions.
4.5 Summary of Contour Shape Hypotheses

Starting frgm a definition and hypothesis of shape similarity among
formant transition functions, it was easy to show that a similarity

constraint would suffice for representing formant contours
which the separate contributions of the vowel and the
context could be uniquely estimated from formant data.
re-Wworking of some old data showed that while there exists
of transition functions that are shaped similarly to each other, there is
also a substantial set of them that are not. Nevertheless, there still seems
to bhe some hope of finding enocugh regularity among transition shapes for the
separate elements of a coarticulation model to be recovered from formant
data. If this can be done, the goal of handling coarticulation effects in
automatic phonetic recognition will have been significantly advanced.

in a form from
initial and final
Unfortunately, a
a substantial set

If such regularites among transition functions cannot be found, then it

would st%ll be possible to recover eatimates of vowel and consonant
contributions to formant contours in CVC syllables, but perhaps not
elegantly. If the transition functions were known, then incoming formant

contours could be fit by an expensive search for the best fit of the model %o
the data via an analysis-by-synthesis in which all possible CVC contours are
computed, compared to the unknown contour, and ranked in order of increasing
rms differnce. While this would show that coarticulation could be handled in
principle even if the most convenient hypotheses should fail, it would be
best if this cumbersome possibility could be avoided.

5. CONTOUR SCALING

We expect the endpoints of the transition functionms, £(0), f£(1), g(0),
and g(1), to be predictable from case to case: T+f(0) and T+g(1) are
expected to be pulled toward some initial and final consonant T"loci" or

targets; T+f(1) and T+g(0) are expected to be close to the vowel target.
Furthermore, we hope that the perturbations of these values away from their
respective targets will be predictable from context. In fact, from several
previous studies, the differences between endpoint values and their
respective targets will be expected to be proportional to the scale of the
overall gesture. That is, vowel undershoot and perturbation of trajectory
endpoints from respective consonant loci are hypothesized to be proportional
to the differences between vowel targets and consonant loci.

5.%1. Locus Hypotheses

Letting the respective initial and final consonant loci be L{C1) and

L°(c2), we hypothesize that:

H1A: T + £(C1,V;0) will be pulled toward a locus L(C1)
H1B: f(C1,V;1) will be near zero
H1¢: g{V,C23;0) will be near zero
H1D: T + g(V,C231) will be pulled toward a locus L°(C2)
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VOWEL TARGET

f(0.5)

— e — — — . — —

PERTURBATION

' 5.2. Effects Proportional to Locus-Target Distances

: It is to be hoped that the p’s can be expressed as simple functions of
. the vowels and consonants. Indeed, various studies suggest that vowel target
‘ undershoot is proportional to the consonant-vowel formant distance.

VOWEL UNDERSHOOT

CV CONTOUR

FREQUENCY

p, = LOCUS PERTURBATION

¢ generalizing this idea to include the vowel endpoints results in a set of
hypotheses about the linearity of the p’s:

H2: There exist proportionality constants k1, k2, k3, and ki such that

(1)

p1(C1,V) = K1(T - L)

p2(C1,V) = k2(T - L)

p3(V,C2) = k3T - L")

CONSONANT LOCUS

K4(T - L")

pi{v,C2)

These proportionalities are similar to the factor k(F2i-F20) in
Lindblom’s equation (Equation 1), even though he presents no direct picture
of how his data support this distance-proportional term. Equation 14 is a

slight generalization in that target-locus distances are being hypothesized

0.5

t, NORMALIZED TIME

to apply at transition-function endpoints and not just at vowel centers.
' These proportionalities also differ slightly from Lindblom s in that they
involve abstract and not directly observable targets and loci, while
Lindblem’s eguation involves both a target F2t and a directly observable
initial value F2i.

Lindblom’s data and
coarticulation effects
preliminary step, Figure

Figure 9. Perturbations p1

model can be re-worked to give direct support o
proportional to target-locus distances. As a
10 shows a plot of Lindblom’s tabulated F2t versus

transition function. Initial
undershoot is also shown.

The loci are only very loosely defined at this point. One

approach to specifying them will be given in Section 5.2.

The perturbations of the endpoints of model CV and VC trajectobies

their respective loci or targets are defined by:

p1(C1,V) = [T(V)+f(C1,V;0)] - L(CT)

p2{C1,V} = £{C1,V;1)

p3{v,c2) = g{v,c2;0)

pi(v,c2)} = [T(V)+g(V,C2;1)] - L7(C2)

The first two p’s, involving {, are illustrated in Figure 9; 
involving g are exactly symmetric, with the roles of t =

reversed.
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consonant contribution to the vowe 5

the difference between tabulated F2i and F2t. For the most part, the data
fall on straight lines, one for each consonant. Context /g--g/ is separated
into palatal and velar allophones [¥--F] and [g--g]. The intercepts of these
lines with F2i-F2t 0 are plausible values of F2t to assign to the consonant
loei L: when the onset and target freguencies are the same, it seems
reasonable to say that the consonant has no perturbing effect on the vowel,
and this would be expected when L = F2i = F2t. The loci thus derived are
shown at their respective intercepts in the figure. The locus for (g] is
undefined, as its 3 points are close to the vertical line F2i-F2t -350 Hz.
As an expedient in what follows, then, the value L{F) will be operationally
adopted for L(g).

oper

These values of L, together with Lindblom s tables of F2t and F2i, give
us the plot in Figure 11, which shows the locus perturbation F2i-L plotted
against the locus-target distance F2t-L. For each consonant, a straight line
fits the data for the 8 vowels fairly well. Considering the provisional
definition of the [g] locus, not much significance should be attached to the
straight 1line through its 3 data points. That each consonant has its own
line supports the distance-proportional hypothesis in a per-consonant sense.
Therefore each C might be expected to have a different ki in Equation 14.
This plot supports the portrayal of vowel onsets schematized above in Figure

5B.

1
caleculate realized values of F2 at the vowel center for a fixed duration of

Similarly, the plot in Figure 12 is generated by using Equation to

0 a
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L(g) = 2230 Hz ~oo : I i
2200 I O /b-b/ LOCUS DISPLACEMENT
+ = 150ms
® /d-d/
A /g-—-3/
0
1800 |- ~ ;:
T .
1680 Hz o
= e -
F,, (Hz2) V< 500
u?
1400 a Foy= L & k{Fy~1L)
0.64 for /b~b/ O
=1000 - . d 018 for /d-d/ @ m
7 0.11 for /F-3F/ A
0.76 for /g—-g/ &
1000 1 ]
-1500 l
=-1500 -1000 -500 0 500 1000
Foy = L (HZ)
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-1000
Figure 11, Onset perturbation p1 from the operationally defined

consonant locus plotted against the target-to-locus distance for the 8 vowels
and 3 contexts studied by Lindblom (1963).

Figure 10. Second formant target frequency F2t plotted again
onset-to-target distance F2t-F2i for the 8 vowels and 3 contexts: ref
Lindblom (1963). .

These plots are the first I know of to directly demonstrate the
Eroportionalities implied by Equations 1 and 2 for the models of Lindblom and
Ohman.

A qualitative articulation of distance-proportional effects comes from
Stevens and House (1963), who observed, "It is evident that the extent to
which an ideal articulatory configuration is achieved for a vowel depends
upon the effeective ‘distance” that the articulators must traverse during
various phases of the syllable..." {p. 120). Later, Stevens, House, and
Paul (1966} say: "...the displacement [from the loci] is in general greater
when the distance between the consonant locus and vowe)l target is greater.”
{p. 128). Also, "The amount of displacement of F2m [the realized F2 steady
state] is, in general, greater when [the vowel-initial and vowel-final values
of F2)] are farther from the target frequency." {(p. 129}.

150 ms. These values allow us to compute the vowel target undershoot
is ploted against the locus-target distance in Figure 12. Again ¢
mostly well represented by lines through the origin, one for each-::CO
Therefore vowel undershoot seems to be proportional to locus- targe d
again in a per-consonant sense. :

An exception to the proportionality is the insensitivity of-
target undershoot to T-L for /g/ in the context of back vowels:
case, the perturbation seems to be "saturated" at -110 Hz, rem1n1 c

As just seen Lindblom’s data lend uantitative support to these
behavior of /M,w,r/ in Figure 8. 3 ’ q PP

notions.
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Figure 12. Vowel undershoot F2t-F20 plotted against the target ti
distance for the 8 vowels and 3 contexts studied by Lindblom (1963).

5.3. Implications for Modeling and Recognition
Clearly, distance-proportional effects simplify the coart_
model . This was already seen in Equations 1 and 2 for the effec

single context. For independent initial and final contexts,
functions can be cast in the similar forms:

£(C1,V,i3t) = k5(C1,i) [T(V,i) - L(Cc1,1)] F(e1,ist)

g(v,Cc2,1i;t) = k6(C2,1) [T(V,1) - L7(C2,1i)] B(C2,i5t)

where F and g are consonant-dependent transition function shapes,'kw_
consonant-dependent scale factors, and T(V), L(C1) and L°(C2) the ¥
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consonant target and loci. The transition function shapes ? and g in ﬁhis
jinstance are not given by f* and g* from Equation 9, but can be even simpler:

py appropriate scaling of k5 and k6 they can be set equal to any
representative f and g associated with C1 and C2. For example, f could be
set equal to any one of &he non-zeroc f°s shown in Figure 5B and, by
appropriate scaling, could generate all the other f’s in the figure.

If f and g could be represented by Equation 15 it would still be true
that each CV or VC combination would have to have its own associated
transition funetion. But these functions would now be built up from simple

elements, each dependent only on the individual vowels and consonants, and

. pot on their c¢ombinations.

Equation 15 involves not only the factors proportional to target-locus
distances, but also factors representing shapes of transition functions which
are similar on a per-consonant basis. This equation substituted into the
linear coarticulation model can be used to derive target undershoot or locus
displacement as proportional to target-locus distances. Therefore the
empirical proportionalities shown by the data in Figures 11 and 12 also lend
some support to the notion of per-consonant shape similarity among transition
functions.

Beyond their roles in simplifying the coarticulation model and in
supporting per-consonant shape similarity of transition functions, it is not
too clear what implications distance-proportional effects might have for
recognition. The situation is complicated by the consonant-to-consonant
variability of the constants of proportionality. One would expect that a
conceptually simple form such as Equation 15 would aid in "solving" formant
contours for the elements attributable to the vowel and consonants, perhaps
along the 1lines tried in Section 4.2.2. At the moment, however, it is not
clear how this could be done without going to a costly search for a best fit
between ‘a data contour and the full set of model contours.

5.4, Duration Dependence

Something must now be said about how duration effects might be handled
in the linear model. How this is done will obviously depend on how formants
are actually observed to act. The intuitive notion of explaining
coarticulation in terms of the time available for completing a gesture
suggests a natural hypothesis: Each CV or VC combination follows the same
path, independent of duration, but completes a smaller or larger subset of
that path depending on the available time. What this means for the linear
model is that for a given duration 7, the transition functions f and g
corresponding to C1, V, and C2 would be time-truncated to duration T before

being added together to form the formant contour. More precisely, the
hypothesis might be stated:
H3A: For any given C1 and V, there exists a unique £(Cc1,V,i;t) such

that:

(16)
F(C1,V,i3t) = T(V,i) + £1[0,73(C1,V,1i5t)

where £][0,7] is the restriction of f to the time interval (0,7, i.2., it is
f truncated at t=7.



Thus the initial-consonant transition function would always
the same value f£{0), but end at the duration-dependent value £(7).
be found to be true, or will f{0) itself be displaced by duration,
tne formant value at the vowel onset is dispiaced by target-locus distance
Observations made under duration changes will be needed to anawer Lhes
questions and to characterize the duration dependence of injtial-consonant
transition functions.

Similar questions apply to the final-consonant transition function
g’s. The hypothesis that is symmetric to the hypothesis of time-tru
f’s would be that g’s for a given VC all terminate on the same value
begin at some duration-dependent position on the general g curve.
becomes easier to express if the time argument is taken to be T-t instea
t. Then g(0) would represent the value of g at the vowel termination an
g(T) its value at the vowel " onset. Using this convention for the
argument of g, the hypothesis is:

H3B:
that:

For any given V and C2, there exists a unique g{v,C2,1;7-t)

F(V,C2,i3t) = T(V,i) + g]l0,TI(V,C2,1;7~t)

where g)[0,7] is g truncated at T-t=T:

If some form of these hypotheses is borne out, the incorporatio
duration dependency into a coarticulation model will be fairly simple.:
should also make it easier to apply such a model in automatic recogn
Equation 1 for Lindblom s duration-dependent model is consistent wi
jdea that the f’s and g’s might be represented by time-truncated exponent
functions.

6. CONCLUSION

Review and re-interpretation of past work has shown a number of 'id
that should be useful for modeling and recognizing vowels in context
gestures into and out of a vowel appear to combine by superpositior
promising to simplify a coarticulation model. Such linearity also opens tt
door to using smaller data bases and to using real time scales inste
scales normalized by durations.

The model will be further simplified if acoustic phonetic gesture
be characterized by a few simple shapes and if their scales turn out to
proportional to locus-target distances. B

Evidence for these simplifications is promising, but extensive new
Wwill be needed, first to test the validity of these notions under a
variety of conditions, and second to obtain the actual numerical values
the model.

Present analysis tools coupled with the reductions in data base
promised by linearity should make this a reasonably scaled task.
the proposed linear model, initial-consonant transition functions
essentially built wup from the average behavior of CV utterances:
final-consonant transition functions from that of VC utteran:
("Essentially” refers to other considerations that favor using CVK uttera
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instead of CV’s, where K denotes some fixed final context whose corresponding
g has been found from VK utterances.)

If the resulting f’s and g’s show sufficient structure among themselves,
it may be possible to develop an analytic form of a ecoarticulation model from

which vowel and consonant parameters can be estimated directly from incoming
formant contours. Otherwise, vowels and their contexts might have to be
analyzed by a cumbersome search-and-fit between the model and incoming data.
A third possibility would be to use a purely empirical method to recognize
vowel and context according to where they fall in a space defined by n time
samples of the formant. Figure 1 represents such a method using 2 time
samples. To do any of these requires a look at more data.

The ideas explored in this paper have 30 far been developed and tested
on the basis of a limited set of observations involving only a thin sampling
of languages, speakers, durations, and vowel-context combinations. It is
therefore too early to tell how coarticulation models will finally look and
how they will be used to enhance recognition. What does seem sufficiently
proven is that context is a significant source of variability in vowel
parameters. This means it is necessary at some stage to take on the problem
of context. Context is also a largely predictable source of varlability.
This means that its pursuit should also be rewarding.
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RULES AND STRATEGIES FOR
SYLLABIC SEGMENTATION,
PHONEME IDENTIFICATION AND
TUNING IN CONTINUOUS SPEECH
RECOGNITION

Guy Mercier
TSS/RCP
Centre National d’Etudes des Telecommunications
route de Tregastel, 22301 LANNION CEDEX (France)

ABSTRACT

rm the continuous speech signal into a series of discrete units, The basic
linquistic units frequently taken into account by the phonetic analyzers are the syllable and the phoneme.
Unfortunately, various and irregular phenomena of speech such as coarticulation, speech rate, noise, stress, and
dialectal variations affect the accustic signal, making a straight-forward link between these basic units and their
acoustic or articulatory representation impossible. As 2 result, a larger set of intermediate units closer to the
acoustic signal and easier to locate and to indentify has to be selected. The most frequently used units are the
diphone. the cluster. the phone, the acoustic segment, etc. These units are themselves characterized by proper-
ties or attributes such as phonetic features which can be detected on the speech signal by means of acoustic cues.

interpreting the different sounds of a given language are

presented. A way to get the allophones and their spectral characteristics from a set of phonetically balanced
sentences is put forward. Special care will be paid to phonetic knowiledge and to the rules which enable the
segmentation of the signal into syllables and phonetic segments and the progressive recognition of the most
important phonetic classes from the identification of the articulatory features : opening. nasalization. occlusion,
voicing. frication, silence, burst. Context-dependent rules allowing the refinement of the segmentation and the
classification achieved before are explained. The last two important points to be dealt with in this paper concern
first the interactions between these different steps. namely the general organization of the acoustic-phonetic
decoder and its integration into a continuous speech recognition system and secondly the probilems of automatic

speaker adaptation and the seatch for speaker independent cues.

Examples and results achieved cither through the acoustic-phonetic decoder of the KEAL speech recogni-
tion system or through other systems illustrate the steps mentioned above. Thus. continuous speech segmenta-
tion into syllables with an error rate of about 5% can be achieved for a great number of speakers. As regards the
segmentation into phonemes, an omission rate of about 5% and an insertion rate of 10% are usually obtained, in
normal conditions. The percentage of correct :dentification for broad phonetic transcription ranges from 80 to
05% for a limited number of speakers. Excellent recognition percentages of the place of articulation of the
plosive and nasal consonants have also been published. However, in normal conditions. the final percentage of
correct classification for finer phonetic transcription can decrease below 60%. One of the reasons is that in a
hierarchical process, errors of segmentation and identification are cumulative. Moreover, these results are 'too
much affected by different factors such as recording conditions, noise, speakers. etc. Ways to overcome part of

these difficulties and to make the cues and rules more reliable are suggested.

This paper describes how to transfo

The basic parameters and acoustic cues useful for
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