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The chapters in the first half of this book have focused almost exclusively
on the representations used in facial perception. This research has resulted
in the creation of computational models that specify the process by which
pattern spaces are constructed from sensory input. These representational
models have been shown to account for a wide variety of experimental
data including distinctiveness (Valentine, chap. 3, this volume), similarity,
typicality {(Busey, chap. 5, this volume; Steyvers & Busey, chap. 4, this
volume), and generalization across viewpoint and lighting (Edelman &
O Toole, chap. 10, this volume). The purpose of this chapter, in contrast, is
lo discuss mathematical models for processin g the psychological evidence
resulting from these pattern spaces (O’ Toole, Wenger, & Townsend, chap. 1,
this volume; Townsend, Solomon, & Smith, chap. 2, this volume). Qur
approach is aimed al tackling problems associated with the hypothesized
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rules and processes that operate on psychological evidence spaces (O Toole
et al,, chap. 1, this volume). Whereas representational models are mainly
concermned with information, this work focuses on information processing.
Information processing models of facial perception specify the operations
or procedures by which facial representations preduce behavioral decisions.
Our assumptions concemning the nature of information processing have
been formalized in a mathematical model called the fuzzy logical model
of perception (FLMP).

In this chapter, we present an information processing framework for in-
quiry and show how this framework can inform our understanding of facial
perception. A formal modeling appro‘z\lgl_], experimental paradigm, and fa-
cral amimation technology are the core components of this framework. We
believe our model of inquiry provides a number of advantages for research
in face processing, namely, (a) the formalization of information and infor-
mation processing assumplions, (b) a common mathematical language for
specifying and comparing alternative hypotheses, (c) a level of theoretical
specification sufficient to falsify assumptions and hypotheses, (d) a formal
distinction between representation and process or information and infor-
mation processing, (€) a modeling approach flexible enough to explore a
wide range of assumptions, and (f) unparalleled control and consistency
of expertmental stimuli through high-quality computer animation. One of
the most successful models, the FLMP, is extensively reviewed because it
formalizes the assumptions of this framework. The FLMP approach spec-
ifies a strong distinction between information and information processimg
which illustrates that this model is a powerful tool for the analysis of be-
havior. We show throughout that the distinction between information and
information processing is central for the understanding of face perception.

The FLLMP approach provides a level of specification that allows for tests
of long-standing issues in the domain of facial perception. Three issues
that we explore in this chapter are modularity, categorical perception, and
holistic processing. Modularity is evaluated by testing the FLMP across
three domains of face processing: facial affect, face identification, and
facial speech. Categorical perception and holistic processing are tested
through a formal modeling approach. What follows now is a brief history
behind our general framework for psychological inquiry.

FUNCTIONALISM AND INFORMATION

Our approach to psychological inquiry has a long history based on the
early functionalism of James (1890) and Dewey (1886) and the probabilis-
tic functionalism of Brunswik (1956). Brunswik’s lens model of perception



[

L)

1: FWK
HAPT08

Fult service

LEOG8/ Wenger July 29, 2000 17:39 Char Count=

8. FRAMEWORK FOR FACE PERCEPTION 287

outlines the process by which environmental stimuli are transduced by the
Sensory system and then evaluated and integrated. A strong distinction is
made between two types of representations in this process. Ecologically
valid features give reliable information about the structure of the world.
Although these features are potentially useful, they may not actually be
used by individvals within a given 1ask context. Functionally valid infor-
mation, on the other hand, mciudes only those ecologically valid features
that are actually used in perceptual processing. Uncovering ecologically
vahd information does not inform the issue of its functional validity.

Within the present framework, we make a distinction between data and
inforation that runs parallel 10 lh%disljnction between ecological and
functional validity. The Sensory system transduces physical stimulation
and makes available a multitude of data for fusther processing. Only a
subset of the data in this pattern space, however, is used by the organism
for a given task. These functional data are called information.

Brunswik proposed that functional features are only probabilistically
related to perceptual caicgones. Thus, in any given situation there is a
certain probability that a given featere will be a reliable indicator of a
perceptual category. With new insights from fuzzy setiheory (Zadeh, 1 965)
and support for continuovs information in perception (Swets, 1998), the all-
or-none principle of {i cature-category relations is no longer needed. Rather,
lunctional features are informative to varying degrees and can therefore
be represented by truth values. For example, height of an object in the
vertical plane is neither a necessary nor sufficient cue for the perception of
a given depth (Cutting, 1998). Height in the vertical plane only provides
mformation about the degree to which a certain depth is present.

Both our experimental and modeling approaches are deeply rooted in
Anderson’s (1973, 1981, 1982, 1996) functional measurement theory of
cognition. This theory proposes that the integration of different information
sources (informs) can be undersiood through common algebraic operations
such as multiplication, addition, and averaging. According to Anderson,
the goal-directed nature of information processing results in valuations of
environmental cues. These valuations combined with valid measurements
of implicit responses provide a quantitative basis for the calculation of cog-
nitive algebra. However, support for the validity of cogpitive algebra can
only come from evidence that valuations or subjective meanings of envi-
ronmental cues are invariant across contexts and situations. Such evidence
was provided by an array of experiments on person impression formation
(Anderson, 1962, 1965, 1974).

Functional measurement provides a framework for measurng the valua-
tions of each of the information sources, adjectives in this case, and simu)-
taneously a test of how the valuations are combined. The most powerful
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aspect of this framework is that it allows specific tests, and therefore poten-
tial falsification, of vanous theories. Accordin g to cogmitive consistency, for
cxample, participants in the person impression experiments should atternpt
lo reconcile two trait adjectives so that they are in concordance with each
other. This involves changing the meaning of each adjective so that they
provide a consistent overall impression of the evaluated person. Cognitive
consistency, therefore, asserts that the subjective meanings of the adjec-
tives are contextually dependent. Contrary to this idea, however, empirical
results showed that the adjectives had an additive effect on likableness
and therefore, no interaction. Accérding to Anderson, this result supports
contextual independence and thus, méps@_ing invanance.

The validity of functional measurement supports the use of cognitive
algebra n psychological inquiry. As it appears that we are justified in
quantifyimg mental processes, the use of mathematical modeling as a tool
for studying the mind becomes a reality. Undoubtedly, the results of any
Investigation are informative only 10 the degree that they distinguish amon g
alternative theonies. Our approach 1o experimental design, data analysis,
and model lesting has been devised specifically to attempt to reject some
theoretical alternatives. Thus, we use a falsification and strong inference
strategy of inquiry (Massaro, 1987b, 1989; Plait, 1964; Popper, 1959).
Mathematical modeling is a powerful tool for exploring mental processes
because it allows for specific predictions and therefore, decisive rejections
of competing models. Likewise, the factorial and expanded factorial de-
signs, manipulation of two or more variables independently, provides arich
and fine-grained data set to challenge and disciminate among theories.

INFORMATION PROCESSING ANALYSIS
OF FACE PERCEPTION

Stages of information processing and hierarchical processing have been
central 1o our approach to the study of psychological phepomena (Massaro,
1975a, 1975b, 1987b). In face processing, for example, there are at least
three stages of processing;: retinal transduction, sensory cues, and perceived
attributes (DeYoe & Van Essen, 1988). Visual input is transduced by the
visual sysiem, a conglomeration of sensory cues is made available, and
attnbules of the visual world are experienced by the perceiver. There is
no reason to assume that sensory cues directly map to perceived attributes
in a one-to-one relation. Both one-to-many and a many-to-one relations
are possible. As an example of the former, motion provides information
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about both perceived shape of an object and its percelved movement. In the
case of a many-to-one relation, information about the shape of an object
Is enriched not only by motion, but also by perspective cues, picture cues,
binocular disparity, and shading (e.g., chiaroscuro).

In face processing, sensory cues can imply more than one perceived
attnibute. For example, lip rounding can indicate the open mouth of surprise
and also the rounding articulation of (he consonant /i/ or the vowel fu/.
Straight downward sloping eyebrows may give the impression of anger as
well as providing a cue to person identity.

When perceiving emotion in the face, surprise is indicated by the per-
ceived attributes of raised cyebrowsir;_%\éide open eyes, and an open rounded
mouth. These attributes, in turn, are made up of many sensory cues. For
example, raised eyebrows include wrinkled skin on the forchead, rounded
eyebrow shape, and wide eycbrow spacing. Sometimes when an expression
lacks one or more of these cues or has contradictory cues we feel uneasy
about the legitimacy of the underlying emotion. In this case, multiple cues
may indicate an attempt to deceive (Ekman, 1992).

Similar to the mapping between sensory cues and perceived altributes,
the mapping from perceived attributes to categories may be one-to-many
and many-to-one. It is probably most common to think of several perceived
atinbutes providing evidence for a single perceptual category. In the pre-
ceding example, surprise is given by raised eyebrows, open eyes, and open
mouth. It is also possible, however, that a smgle atiribute is evidence for
many categonies. For example, raised rounded eyebrows indicate surprise
as well as identity and gender. Additionally, the openness of the meuth
signals an emotional category (surprise), a speech category (vowel), and
an 1dentity category (my brother).

FLLMP

The results from a wide variety of experiments have been described within
the framework of the FLMP. Within this framework, facial processing is
robust because there are usually multiple sources of information that the
perceiver evaluates and integrates 1o achieve identification. When encoun-
tering a well-known person, for example, we not only use cues from the face
to identify that person, but also how they walk, their vocal characteristics,
and even distinctive clothing or jewelry. Accordin g to the FLMP, patterns
are recognized in accordance with a general algonthm, regardless of the
modality or particular nature of the patterns. The information processing
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FIG. 8.1. A schemalic representation of the four processes in
volved in percepiual recognilion. The lour processes are shown
In sequence, left 1o right, to Nusirale their necessarily successive,
bul overlapping operalions. These processes make use of rowg-
types stored inlong-term memory. Uppercase leners represent ihe
sources of inforrmation. Audiory informaiion is represenied by A;
and visua! information by V). The evaluation process Iransforms
these sources of inforrmation inte psychological values {indicated
by lowercase letters g; and u;). These sources are then integraled
10 give an overall degree of support sk, for each speech ahemnaiive
k. The assessment operalion uses these 1o arrive al some overall
measure of support for a given alternative. The response selec-
lion process maps that value inlo some response aliernative, 13y,
The response can take the fonm of a discrete decision or a rating
of 1he degree 10 which the allemative is likely.

assumplions central to the model are (a) each source of information is
evaluated to give the degree to which that source supports the relevant al-
termattves, (b) the sources of information are evaluated independently of one
another, () the sources are integrated to provide an overall degree of su pport
for each alternative, and (d) perceptual identification follows the relative
degree of support given the alternatives (Massaro & Friedman, 1990).
The FLMP assumes four stages of processing in perceptual identifi-
cation: evalualion, integration, assessment, and response selection (Fig.
8.1). At the evaluation stage, input information is compared 10 a proto-
type description in memory and the degree of match is output as a fuzzy
truth value between O and 1.' This input may be in the form of specific

'We define the output of the integration stage, s, as a support function, S(k). The result of this
support funciion 1s a real number (fuzzy truth value between 0 and 1}. Altematively, we define the
output of decision, Ry, as a probability function, P(k). The resull of this function is a probability
between 0 and 1.
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features or more general dimensions of information but the model assumes
all sources are independent.2 For example, if the second (F2) and third (F3)
formants are the functional auditory sources of information, and the lips
are visual sources then the prototype for syllables /da/ and /ba/ are given
by the following propositions:

/da/ : Slightly falling F2-F3 and open lips
/ba/ : Rising F2-F3 and closed lips

In the implementation of the mode), the features for /da/ and /ba/ are
mutually exclusive such that the suppgrt for one alternative can be defined
as the negation of the support the other alternative:

/da/-anv
/bal - —a N -—v

where a is the auditory information and v is the visual. With fuzzy truth val-
ves between 0 and I, negation is generally defined as: —x = 1 — x (Zadeh,
1965).* At the evaluation stage, support for any alternative is proportional
10 the degree that the stimulus matches the prototypes in memory. Accord-
mg to the FLMP, it is assumed that every source in the stimulus is evaluated
against its prototype independently of all other sources. If the visual stimuli
are denoted by V; and the auditory stimuli are given by A;, then

v; = g(Vy)
a; = g(A)

where i and  are levels of the auditory and visual sources of informa-
tion defined in our experiment. The degree of match is given by a; and v i
which are continnous fuzzy truth values (real numbers) between 0 and 1.
The values that a; and v; can obtain is some function, g(x), of the stimulus

2Note ihat we use the terms features, dimensions, information, and sowrces more or less interchange-
ably to refer to the inpul to the FLMP. This information is assumed to be at the Jevel of psychological
evidence (see O'Toole et al, chap. 1, this volume). Given that the focus of this modeling approach is
processing, we do not constrain the definition of a feature in the usual sense lo mean a local, continnous,
and bolistic enit of faformation. Rather, each feature may be compesed of many independent sources of
information, include relational o configural properties, or be built from, for example, pixels distriboted
spatially across the stimuli.

3While we refer to Zadeh's work here, it should be noted that several other classes of functions
have been developed for performing opesations on fuzzy sets (see Dombi, 1982; Yager, 1980).
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values. Because a; and v; are free paramelers, this function is not explicitly
specified in the model but, rather, is determined by the fitling process. As
Just seen, both sources of information are independent because their values
do not depend on one another. Fuzzy truth values represent the subjective
merit of each source at each level in the experiment. A value close 1o 0
means a good match to the /ba/ protolype, and a value close to 1 means
a good match to /da/. A value around 0.5 indicates that the stimulus is
ambiguous and does not support either alternative.

Atthe integration stage, tolal support, s, foreach alternative, k, is defined
as: '

s,

S(/daf)y=a;Nv;

S(/bafy = (1 —a;)N(l —v;)

According to this equation, the manmner in which auditory and visual
sources of information are integrated is defined as the conjoint of two
fuzzy truth values (Massaro & Friedman, 1990; Massaro & Oden, 1980).
One of the chief assumptions of the FLMP is that information sources are
combined according to a multiphcative rule. Generally, the conjunction of
fuzzy truth values is defined as: x Ny == x x y. Given this, the combined
support for /da/ and /ba/ for each of the i x j conditions is:

S(/daf) = ajv; (1)
S(/ba/) = (1 —a))(1 — vj) 2

More generally, the multiplicative support for any altemative, &, given
n sources of information is:

sky=11 £ 3)

r=1

where f, is the evalnated sources of information, x indexes overall sources,
and n is the total number of sources. This represents the general form of
the equation for combining independert sources of information.

After the support for each altemnative is found, a final decision is per-
formed with two operations: assessment and response selection. The as-
sessment operation finds the total support for some altemative relative to
the support for all relevant alternatives. Response selection follows a prob-
ability matching rule in which the likelihood of a given response is equal
to its relative goodness of match to the input. These two operations are
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summanzed in the relative poodness rule (RGR), which is closely related
10 Luce’s (1959, 1977) choice axiom. The RGR gives the probability of
responding for each altemative in each condition of the experiment. The
general form of the RGR is the probability:
S(k)
Pk)y= ——'— 4)
i1 S(k)
where £ is the altemmative and m is the number of relevant alternatives.
Applying this equation to our example with just two alternatives we have:

. Styda))
P(/daf|A;V,)= S(/daf) + S{/ba/)
av;

)
o O‘,—Vj + (] —a,-)(l — VJ)

This equation states the probability of /da/ given the auditory and visual
stimuli 1s equal to the support for /da/ divided by the support for /da/ plus
the support for /ba/. Using this equation we can predict the probability of
responding in each of the conditions of the experiment. Each level of the a
and v stmuli is treated as a free parameter. Thus, for a factorial experiment
we have i -+ j free paramelters to predict i x J conditions. For an expanded
factorial experiment we have i + j unimodal levels to predicti x j bimodal
conditions plus i + j unimodal conditions.

Although the FLMP represents the assumptions of our framework, it
15 relatively straightforward to formulate alternative hypotheses. As stated
earlier, Anderson (1962) first proposed that information integration for per-
son impression formation is additive. Changing multiplicative to additive
mtegration involves merely addin g the support from each source instead of
multiplying. Thus, Equation 3 now becomes:

S =1 (5)

x=1

For the preceding example, the combined support for auditory and visual
sources of information becomes:

S(/daf) = q; +v;
S(/bafy=(1—a)+ (1 —v;)

“For both the factorial and expanded faclonial experimental designs, every level of one stimulus is
presented with every level of apother in al) possible combinations. For the expanded Factorial design,
bowever, every level of both stimuli is also presenied zlone.
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The probability of responding for /da/ and /ba/ is now:

P(/da/|AV;) = Gty
a0 —a) (1 —v))]
a; +v;
-2

 —a)t—v)
a +vi -l —a)+ (1 —v))
_(-a)+d-v)

P(/ba/1A:V})

Other assumptions about perceptual identification can also be repre-
sented. For example, some theories assume that perceptual information is
not integrated at all. Rather, responses are based only on one source of
information al a time. This single channel model (SCM) s constructed by
assuming that the individual has some bias § for using one source or the
other. To compute the influence from one source, simply multiply it by the
bias parameter. The general form of the SCM equation for n sources of
mformation is:

SE) =Y B.f (©)

x=]

Using p as the bias parameter for auditory information and 1 — p as the
bias for visual, Equations 1 and 2 become:

S(/daf} = pa; + (1 — p)v;
S(/baf) = p(1 —a)+ {1 — p)(1 —v;)

The probability of responding for /da/ and /ba/ is now:

pai + (1 — pyv;
pa;i + (1 — py; + [p(l —a;) -+ (A — p)1 —-v))]
= pa; + (1 — pv;
pl ~a)+ (1 - p)1 —v;)
pa;+(1 — pv; +[p(1 —a;) -+ (A — p)1 —v))]
=p(l—a)+ (0 —p)1—v;)

P(/da/|A;V;) =

P(/baf|A;V;) =
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Once formulated, models are tested by fitting their predictions to ob-
served data. Fitting is typically performed by iteratively adjusting the pa-
rameter values until the difference between the observed and predicted data
is minimized. To measure this difference we use the root mean squared de-
viation (RMSD). The model with the lowest RMSD is assumed to ft or
describe the data better than all competing models. Thus, our criteria for
falsification is a quantitative measure as given by goodness of fit. Although
we cannol prove conclusively that the best fitting model is true, we can rule
out poorer fitling models since they give a less accurate description of the
data. ’

Whenever possible we also use ‘gyualitative falsification sirategy Jike
that outlined by Wenger and Townsend (chap. 7, this volume). According
10 this strategy models are falsified when their predictions are inconsistent
with the observed data. Here there is no need for goodness-of-fit measures.
Either the pattern of results predicted by the model is seen in the data or it
isnot. The FLMP makes a qualitative prediction that the combined support
from multiple sources will be superadditive or some value greater than the
sumn of support. In contrast, the weighted averaging model (WTAV) predicts
that the combined support cannot be greater than the sum of support from
all sources. Because these predictions are mutuail y exclustve, the data must
falsify one model. As demonstrated later, the observed data clearly show
superadditivity, thereby falsifying the WTAV.

Relative RMSD values are one way to compare models, but 10 obtain
a more absolute measure of performance, one must calculate how well
the model would fit under ideal conditions. This type of fit is called a
benchmark and indicates the best possible accuracy of the model given a
certain number of observations or samples per condition. As the number of
observations increases, the benchmark RMSD, RMSD(b), approaches 0.0.
Yor example, an RMSIX(b) of 0238 for model A and .0492 for model B
indicates that we would expect more accuracy (less sampling variability)-
for model A and possibly better RMSDs. -

To compute the benchmark we first generate an ideal set of data us-
ing the model under consideratjon. The model is fit to the observed data,
yielding a set of predicted data points. Because the model generated the
predicted data, refitting the model to these data would result in a perfect fit
(RMSD = 0.0). Using Monte Carlo simulation we resample each predicted
data point as follows. A random number between 0.0 and L0 is selected
from a uniform distribution. If we have two alternatives, A and B for ex-
ample, a random number below the predicted proportion is recorded as
an A response. Otherwise, a B response 1s recorded. This Monte Carlo
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resampling 1s performed N times for each predicted data point where N is
the number of observations in the experiment. Given some number of ob-
servations less than infinity, sampling variance will be introduced into the
dala by the simulation. The RMSD(b) is then calculated by fitting the model
to this simulated data set. For a more detailed explanation of benchmarking
methods see Massaro (1998).

Our view of facial perception is specified within the formulation of the
FLMP, but the modeling approach presented here is a valuable tool for in-
quiry more generally. Modefing provides the opportunity to formalize our
theories using a common mathematical language. This in tum allows for
the testing and even falsification of conpeting hypotheses. Formal mod-
eling also forces researchers to produce a fairly detailed, well-developed
account of their theoretical positions. Verbal theories that are vague or in-
complete cannot be easily formalized. The exercise of formalizing theories
may highlight these difficulties and in itself prove to be useful for theory
development.

SYNTHETIC STIMUL.I: BALDI

For much of our research we use a computer animated talking head called
Baldi (see Fig. 8.2) instead of a natural person. Synthetic stimuli provide
the precise control and standardization needed in psychophysical experi-
mentation. Many times, using synthetic stimuli is the easiest if not the only
way to manipulate the variable of interest. For example, if we wish to test
speechreading accuracy without jaw rotation we can ¢ither wire a natural
speaker's mouth shut or simply disable the jaw rotation parameter in Baldi.
Addiuonally, if the rate of speaking needs to be increased or decreased only
Baldi can change his speaking rate consistently. Finally, Baldi can be used
to create conflicting features or ambiguous stimuli much more easily than
with humans.

Baldi is constructed from about 900 triangular polygons joined at the
edges to form the three-dimensional head with eyes, pupil, eyebrows, nose,
skin, lips, tongue, and teeth. Baldi’s name stems from the fact that Baldi
has no hair. Generating hair would require additional polygons or some
type of lexture mapping process and would significantly slow down the
facial animation. To give Baldi a more natural appearance, the surface of
his skin is smooth shaded using the Gouraud method. The head shape and
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FIG. 82, The lowr faces displaying the maximum feature dis-
placements (a1 the comers) as well as faces displaying “neutral
displacemenis. The center lace is the neurtral baseline” face, with
both mouth and brow displaced at the neuiral values, Note that
some faces are quite ambiguous and incongruent in their expres-
sions. The unimodal (half-face) conditions displayed only the up-
per or lower half of the stimulus face. .

movement are completely parameterized through a set of about 76 control
paramelers to permit real-time (30 frames per sec) animation of visible
speech and facial expressions. Realistic speech is created by changing the
parameters over time according to the overlapping dominance functions
of nearby phonemes (Cohen & Massaro, 1993). In this way coarticulation
or the mfluence of neighboring speech segments with each other can be
captured in the synthesis (see Massaro, 1998).
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INFORMATION VERSUS
INFORMATION PROCESSING

One of the main distinctions throughout this book has been the difference
between information and information processing. We believe our model,
FLMP, provides a fine-grained analytical 100] for separating contributions
of information and information processing in facial perception. The FLMP
has been used pnmarily as a model of information processing in the sense
that it specifies how sources of information are evaluated, integrated, and
selected. Although the sources of infonmation for a given task are speci-
fied in the formulation of the model, the exact information value for each
source is a free parameter. This allows the FLMP to account for individual
differences by the degree to which individuals uiilize each source of infor-
mation. As a result, measures of mode] performance indicate how well the
information processing assumptions of the FLMP describe the observed
data independent of the information used by each mdividual. Information
processing is guantitatively specified and the final parameter values offer a
theoretical account of the information value for each source for each indi-
vidual. Thus, the FLMP is not only a method of testing process models, but
also can be used to simultaneously explore the nature of the information
for a given perceptual task.

Investigations of perception are usually confined 10 young adults, and
data analyses are limited lo group averages. The framework of the FLMP,
on the other hand, provides a formal analytical method to investigate
the behavior of individual participants. As is well known, group results
may not represent any of the individuals making up the group. Using
the FLMP approach, we can explore individual differences across age
groups, gender, races, native languages, and heanng or visval impair-
ments in both information and information processing (Massaro, 1998).
One such study, reported in Massaro (1987b), presented preschool chil-
dren and fourth-grade students with auditory, visual, or bimodal speech.
The stimuli varied across a 5 level anditory continuum from /ba/ to /da/,
and 2 visual levels, either /ba/ or /da/. This resulted in a 2 x 5 expanded
factorial design in which the children were asked to categorize the stim-
uli. Modetl tests of the resulting data showed that the FLMP described the
children’s performance quite well for both the preschoolers and the fourth
graders. Thus, information processing appears to remain constant through
development.
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What then can account for the consistent finding that overal! correct
responding is better with increasing age? Analysis of the parameler val-
ues was performed to determine the overall influence of each source of
mnformation. Analysis of the parameter values is only meaningful if the
form of the model is identifiable. In other words, there must be only one
possible set of parameter values for the model. In this case, an expanded
factorial design was used, ensuring that the parameter values were unique
(Crowther, Batchelder, & Hu, 1995; Massaro, 1998).

Given 5 paramelers for the auditory source and 2 for the visual source, the
amountof influence was taken as the range of parameter values. Because the
parameter values vanied between 0 ang 1, so did the range measure. A large
range would indicale a strong effect, whereas a small ran ge would show lit-
tle effect. Preschool children showed a weaker effect (.483) of the auditory
mformation than fourth graders (.845). Preschool children also showed less
of an effect of visual information (.178) than fourth graders (.304). Thus,
improvements in performance result from changes in information over the
course of development. As children become more expenienced with the
world around them, they learn what information is useful. How they use
this mformation in speech perception, however, does not appear to change.
This research is an example of how the FLMP provides a powerful method
for examining individual differences and the basis of those differences in
terms of information and information processing.

CHALLENGES FOR THE FLMP

Three long-standing issues debated in the study of facial processing in-
clude categorical versus continuous perception, holistic versus analytical
processing, and modularity versus general pattern recognition.® Several
current theoretical and empirical positions in facial perception seem to
support categonical information in perception, holistic processing (fea-
tures are processed dependently), and the hypothesis of modular processes.
Because it is assumed in the formulation of the FLMP that information
15 continnous and features are processed independently, these positions
pose a senous challenge for the FLMP. Within the present framework,

SThe term pattern recognition as used here refers 1o the process of identifying a stimuli and not 10
the task of old—uew recogrition (see O Toole et al., chap. 1, this volume).
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perceplion is viewed as a general process of pattem recognition. This
implies that mformation processing remains constant across perceptual
1asks. Thus, modularity or the idea that different perceptual tasks involve
different forms of information processing also conflicts with the present
framework.

Categorical Perception

Categorical perception has long been an issue in the domain of speech per-
ception but it has more recently come to the forefront in face perception
(Beale & Keil, 1995; Cottrell, DaileygPadgett, & Adolphs, chap. 9, this
volume; Etcoff & Magee, 1992). The proposal that features are perceived
categornically directly contradicts the FLMP’s assumption of continuous
information. A categorical model claims that emotion perception is dis-
crete in that gradations of emotion are nol easily perceived within an emo-
tion category. Although there is a long history of categoncal perception
in speech research, theorists currently seem to agree that perceivers have
within-category information that is functional in speech perception. This
viewpoint did nol emerge easily and sometimes a bit of theoretical regres-
sion reaches the airwaves. Unfortunately, this progress has not transferred
1o research on the processing of faces. We review and criticize a few re-
cent experimental claims for categorical perceplion 1o set the stage for our
research.

Etcoff and Magee (1992) presented faces created by a weighied aver-
aging of line drawings of exemplar faces displaying different emotional
expressions. Foilowing the tradition in speech perception studies, they car-
ried out both identification and discrimination tasks. The former requires a
calegonization, whereas the latter asks for noticing a difference. The identi-
fication results showed a systematic change in the identification judgment
as the face changed from one emotion category 1o another. In the ABX dis-
crimination task, three faces were presented, the first two of which differed.
The participant was asked to tell which one was identical to the third face.
Discrimination performance was better for pairs of faces that tended to be
identified as different emotions than for pairs identified as the same emo-
tion. Given that category identily appeared to undermine discrimination,
Etcoff and Magee concluded that these facial expressions were perceived
categorically because pairs of equally spaced faces along the stimulus con-
tinoum did not appear to produce equivalent discrimination differences.
Two stimuli within a category were supposedly more poorly discriminated
than two stimuli from two different categories.
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The emotion results are similar to previous findings of categorical per-
ception in speech but we now have altemative explanations. It is now
well known that discrimination tasks underestimate discrimination ca-
pacity (Massaro, 1987a). Many discrimination tasks have memory limi-
tauions and performance is easily influenced by the participant’s use of
category labels. The ABX task, for example, makes it difficult to compare
the third stimulus X 1o the first stimutlus A. In this lask, participants often
encode the stimuli categorically and base their discrimination decisjon on
these category labels. Belter discrimination for items in different calegories
than i the same category does not conclusively show that perception is
‘categorical. e

More impontant, categorical perception research does not follow a fal- _
sification strategy of inguiry. Given a stimulus continunm between two al-
ternatives, a typical result is that the identification judgments change rather
abruptly around the calegory boundary with changes along the stimulus
continuum. Several researchers, hke Eicoff and Magee (1992), have inter-
preted these prototypical findings as evidence for categorical perception.
One error in this interpretation, however, is that the dependent measure,
proportion of judgments, is being treated as a linear measure of perceplion.
In fact, 1t has been shown that this type of observed identification func-
non follows directly from continuous perception (Massaro, 1987a, 1987b).
Sharp identification boundaries between categories follow naturally from a
system with contmuous information and a decision criterion (see Massaro,
1987h).

The most direct measure of whether perception is continuous or cate-
gorical involves comparing quantitative tests of models that assume either
continuous or categorical information (Massaro, 1998; Thomas, 1996).
Unfortunately, most categorical theories do not allow compositional de-
termination and are therefore not easily formalized to make testable pre-
dictions for this 1ask. For both types of theories, it might be claimed that
perception of each face is unique and cannot be predicted from perfor-
mance on the parts that make it up. On the other hand, there are sev-
eral other ways calegorical perception can be tested. There is a specific
categoncal model of perception (CMP) in which the participant catego-
rizes information from each feature and responds with the outcome of
the categorization of only one of the features with a certain probability,
or bias loward that feature. Because this CMP is mathematically equiva-
lent to the SCM, in which the perceiver identifies the stimuli using just
a single source of information, a poor £t of the SCM relative 1o the fit
of the FLMP would also provide evidence against this model. Of course,
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other categorical models are possible and one of these might provide an
adequate description of the results. However, the falsification of our cat-
egoncal model} has stood for over two decades and no one has offered a
successful alternative categorical model to support the idea of categorical
perception.

Modularity

The modulanty hypothesis assumes different modes of processing for faces
and objects. The FLMP algorithm.accounts for the integration of informa-
tion from different modalities { perceptjon by ear and eye), which challenges
the modulanty hypothesis in that it attrihites differences between the recog-
nition of different modalities or different domains like faces and objects
to differences in information. Farah (1995) provided some evidence for a
dissociation between face recognition and object recognition. Within our
framework, she located this difference at information processing, not in-
formation. By different systems for face and object recognition, she meant
that “two different systems must: (a) be functionally independent, such that
either can operate without the other; (b) be physically distinct; and (c) pro-
cess information in different ways, so thal it (one system) is not merely a
physical duplicate of another” (p. 102). Farah’s third criterion for different
syslems 1s consislent with our belief that previous arguments for modu-
lar systems have meant differences in information processing, not simply
differences in informatigp.

Farah studied a man, called LH, who was prosopagnosic. People with
this neurological disorder have difficulty recognizing the faces of loved
ones and well-known celebrities. In one study, he recognized faces and
eyeglass frames aboul equally poorly, whereas normal participants showed
a significant 20% advantage for face over eyeglass frames. Furthermore,
nverting faces disrupted performance for normal participants somewhat but
actually improved performance for LH. These resulis could have resulted
from differences in both information and information processing, or just
in information. For example, the loss of configural information for normal
participants could account for the poorer performance. For LH, the loss of
configural information could have produced better performance by making
faces more like nonface objects. One way of testing between these two
possibilities would be to utilize the microscope of the expanded factorial
design and model testing as in R. Campbell, Zihl, Massaro, Munhall, and
Cohen {(1997).
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Holistic Face Processing

In view of the fact that the FLMP assumes mdependent features, holistic
models of face processing challenge the present framework. It is worth-
while to describe these holistic models and evaluate their conclusions in the
coniext of the FLMP. Holistic processing is a loaded term that js easily ct-
icized but, fortunately, researchers have begun to clarify what they roean by
holistic processing (Farah, Wilson, Drain, & Tanaka, 1998). Farah, Tanaka,
and Drain (1995) and Carey and Diamond (1 994} articulated two different
characterizations.of holistic processing of the face. The terms holistic en-
coding and configural encoding are sed to describe these two viewpoints.
In holistic encoding, the parts of tl‘llééﬁfacc are not separately represented
and utilized. Rather, the face is represented as a whole.

As evidence for holistic processing, Tanaka and Farah {1993) found that
mdividual facial features were recognized more casily when displayed as
pait of a whole face than when displayed in isolation. Whereas recognition
of individual features of faces was facilitated by the conlext of the whole
face mm normal orlentation, recognition was not facilitated in the context of
scrambled faces, inverted faces, or houses. In line with these resulls, Tanaka
and Sengco (1997) demonstrated that alterations in facial configurations
interfered with the retrieval of facial features, whereas the interference did
not appear with inverted faces or nonface stimuli. Moreover, Farah et al,
(1998) used a sclective attention paradigm and a masking paradigm and
compared the perception of faces with the perception of inverted faces,
words, and houses. They showed that faces are not only represented more
holistically than other stimuli, but also that in immediate perceptual mem-
ory and during perception the holistic mode of processing dominated.

These findings and those of Tanaka and Farah ( 1993) suggested that
facial recognition is in some sense a holistic process, differing qualita-
tively from the recognition of other types of images. They claimed that
“the representation of a face wsed in face recognition is not composed of
representations of the face’s parts, but more as a whole face” (Tanaka &
Farah, 1993, p. 226). In this view, parts of the face are not the atoms of face
analysis or representation. This viewpoint is closest to the traditional use of
holistic processing in that it bears great similarity to a template matching
scheme. According to this viewpoint, the parts of the face would not be as
accessible as the complete face.

On the other hand, we must wonder whether the predictions of holistic
models arc really falsifiable. It seems almost as reasonable to expect the



t

1: FWK
HAFT-08

Full service
LEOOB/ Wenger July 29, 2000 17:39 Char Count= 0

304 CAMPBELL., SCHWARZER, MASSARO

holistic view to predict that the complete face would camouflage one of
its parts rather than facilitate its perception. In fact, an advocate of holis-
tic processing in word perception has continuously argued exactly this
point (Johnson, 1975; Johnson & Blum, 1988; for an early critique; see
Massaro & Klitzke, 1977). Thus it seems that an advocate of this version
of holisiic perception could have “predicted” either outcome, facilitation or
mhibition. _

A commendable goal of formalizing models is to prepare them for ex-
perimenlal tests. Unfortunately, we know of no holistic model that can
be quantitatively tested against the results. The class of holistic models
called holistic encoding would assumg that each unique feature combi-
nation would create a unique face that could not be predicted from its
component features. This formulation captures the idea that somehow the
whole is more than some combination of its parts. We are not able o test a
specific quantitative formulation of this holistic model because it requires
as many free parameters as observed data points. Every face 1s umque
and its identification cannol be predicted on the basis of its components.
This model remains untestable until there 1s some implementation of its
prmciples with fewer free parameters. However, regardless of whether a
particular holistic encoding model can be lested, an adequate fit of the
FLMP provides evidence against the class of holistic encoding models. If
the processing of the whole face is noi a function of its component fea-
tures, then a model assuming that the value of the whole is derived from
the values of its parts should fail.

The second characterization of holistic processing, called conhgural en-
coding, refers 10 the possibility that the spatial relations among the parts
of the face are more influential than the parts themselves. The parts are
represented but it is the relations among the parts that are critical for analy-
sis. This inferpretation of holistic processing is also consistent with Tanaka
and Farah’s (1993) finding that individual facial features were more easily
recognized when part of the complete face than when presented alone. Ac-
cording to this view, the complete face wounld provide spatial relations that
would not be available in a part of the face presenled in isolation. We have
no objection to this possibility. In the framework of the FLMP, a relation
between two parts of the face could function as an additional source of
mformation. The configural feature would be encoded and evaluated inde-
pendently like the isolated features. Then, all features both configural and
isolated would be combined multiplicatively.

Unfortunately the hypothesis of configural encoding is also difficult to
test. The nature of the relation between features has not been specified as
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of yet. Is this relation the spatial distance between features, the relative
positions of the features, or the angle of a straight line connecting them?
In terms of our typical factorial design, we manipulate two factors inde-
pendently along a continuum. }f every combination of these two factors
forms a different relational feature, then ‘we have as many parameters as
data points. Clearly, this 1s an untestable model.

Although these issues have been extensively addressed in the facial per-
ceplion hterature, the FLMP approach provides a level of specification.
suffictent to cntically test between the compelting positions. This frame-
work, therefore, offers the potestial to falsify altemative explanations and
advance our understanding of facirigé.pcrception- Unfortunately, theories
that are not specific enough to be formalized cannot be tested against the
FLMP and cannot be quantitatively falsified. Despite this, we attempt to
formulate and test a holistic model in the facial identity section later. This
formulation requires additional assumptions about independence and de-
pendence al various stages of processing. In addition to this test of compel-
ing models, however, the fit of the FLMP alone still allows us lo determine
roughly how well a model that assumes analytic processing predicts the
data. This measure of fil can be evaluated using either previous fits to
other data sets as a rule of thumb or the benchmarking procedure described
earher.

FACIAL AND OTHER CUES TO EMOTION

There is no doubt that the production of facial expressions is an effective
means of communicating emotion. Darwin (1872) argued that facial ex-
pressions have their origins in basic acts of self-preservation common to
human beings and other animals, and those acts were related to the emo-
tional states now conveyed by the descendent expression.

We recognize and characterize facial expressions of emotion in other
humans with a high degree of accuracy and consistency (Collier, 1985;
Ekman, 1993; Ekman & Friesen, 1975; Ekman, Friesen, & Ellsworth,
1972). The face is not unique in this regard, in that we are also tuned
to various nonfacial displays of emotional arousal. Hand and body ges-
tures are well-known cormmunicators of affective states (Archer & Silver,
1991). Even other species produce and respond to visible displays of emo-
tion. Parakeets, for example, are sensitive to the size of the iris {Brown &
Dooling, 1993). This cue is only one of several that parakeets use to signal
relevant mformation, such as sex, age, and emotional arouszl. These cues
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were shown lo be highly functional because they were discriminated more
quickly than other nonfunctional features.

Varying Ambiguity in the ldentification
of Emotion

Baldi, our talking head, makes possible a set of quile realistic faces for
research that are standardized and replicable, as well as controllable over a
wide range of feature dimensions. Displays of ambiguous or contradictory
features or partial face presentations can be made more easily than with
previous types of facial simuli (see*Ejg. 8.2). Thus, it quickly became
apparent that we could mitiate a cottage industry in the study of facial and
vocal cues to emotion. There was no shortage of literalure on facial cues
1o emotion but we found a tremendons void in the domain of vocal cues.
We learned that Baldi had to be given increased resolution in certain parts
of the face, as well as additional controls over these parts.

We use the expanded factorial design 1o study the patlern recognition
of emotion (Ellison & Massaro, 1997). The affective categories happy and
angry were chosen because they represent two of the basic categories of
emotion. Of course, happy and angry faces are not discrete, nonoverlapping
emotional displays, bul a face can vary in the degree to which it represents
one emotion as opposed to the other. To implement the expanded factorial
design, it was necessary to choose two features to vary systematically to
create a range of emotions between happy and angry.

We chose two features that seem to differ somewhat in happy and angry
faces. The features vanied were brow displacement (BD) and mouth cor-
ner displacement (MD). As can be seen in Fig. 8.2, BD was varied from
slightly elevated and arched for a prototypically happy emotion to fully
depressed and flattened for a prototypically angry emotion. MD was varied
from fully curled up at corners for a prototypically happy emotion to fully
curled down at comners for a prototypically angry emotion. An important
criterion for manipulating two features is that they can be vaned indepen-
dently of one another. Thus, varying one cue in the upper face and one
cue in the lower face was an ideal solution. Furthermore, there appear to
be motor neurons from the neocortical motor strip in which the upper and
lower face are served by different neurons (Fridlund, 1994). Five levels of
the upper face conditions and 5 Jevels of the lower face conditions were
factonally combined, along with the 10 half-face conditions presenting
the upper face or lower face alone. The feature values were obtained by
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comparison 1o features displayed in exemplar photographs in Ekman and
Friesen (1975).

These two features are neither necessary nor sufficient for happy or angry
faces, but they are simply correlated with these emotion categories. Like
other calegories, emotion categories are fuzzy in that no set of necessary and
sufficient features characierizes a particular emotion. Even fornatural faces,
there 1s some controversy concerning the degree to which observers can
accurately categorize different emotions. As concluded by Fridlund {1994),
there is no evidence for the claim that a given facial eXpression is unam-
biguously linked with a single emotion category. In addition, several other
features are also correlated with thesg affective categories. For example,
there 3s a tendency for a tightening around the eyes and a lifting of the cheeks
in spontaneous smiling (AHen & Atkinson, 1981; Duchenne de Boulogne,
1990; Ekman et al., 1981). This is another example of the one-to-many and
many-to-one relation between sensory cues and perceived attributes. We
limited our study to just two features 1o keep the number of unique faces
reasonably small and the number of test observations relatively large. Our
lask was a two-allemative forced choice between HAPPY and ANGRY.
There were 35 different test faces. Participants were not shown any exem-
plar faces, nor were they given any feedback. After 10 practice trials, each
stimulus face was randomly presented 16 times to each of 26 participants for
identification.

The pomts in Fig. 8.3 give the observed average results as a function
of the mouth and brow variables. The left panel shows performance when
Just the upper half of the face was presented. Chan ges in the displacement of
the brow were effective in changing the identified emotion in the expected
direction. Similarly, the lower half of the face influenced the number of
“happy” judgments in the anticipaled way. The sleeper curve for the mouth
variable ustrates that it was somewhat more influential than the brow
variable. The middle panel gives the factorial combination of the two halves
of the face. As can be seen in the figure, each of the two variables continued
to be influential even when paired with the other variable.

The average results show most conclusively how two sources of infor-
mation are more informative than just one. The probability of a happy
Judgment was about .80 when just the most upward deflection of the brow
was presented and was aboul .88 for the most upward deflection of the
mouth. However, when the two features were presented together in the
whole face, the probability of a happy judgment was near 1. An anal-
ogous result was found for the most downward deflection of these two
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CHOICE - FLMP PREDICTIONS

1.0 BROW
—*_ ANGRY
n -')-(772
a3
S 0.8- 0 o 4
- o S
- | D Happy
=
w
= D6
=z
s 1 O
— 0.4
P
[
o —
e
x
o 0.2
6.0
1T 17 T 1T ¢ T 1T T+ T T T 1 71 1
ANGRY HAPPY ANGRY HAPPY ANCGRY HAPPY
BROW MOUTH MOUTH

FIG. 83. Predicted {lines) and observed (points) proportion of
happy judgmenis as a function of the levels of the brow and mouth
variables. The left panel shows performance for just ithe upper hall
of the face and the right panel for jusi the lower hall. The middle
panel gives performance for the Jaclorial combination of the two
halves. Average resulls across 26 participanis are shown. The cir
cled points show the superadditivity predicied by the FLMP (from
Ellison & Massaro, 1997, Experiment 1).

variables. These superadditive outcomes are consistent with our general
view of pattern recognition. We now derive the predictions of the FLMP
10 test the model quantitatively agamst all of the results.

implementation of the FLMP

In our implementation of the FLMP for emotion perception, participants
are assumed to have prototypes commesponding to happy and angry faces. A
happy face is characterized by the eyebrows slightly elevated and arched
and the mouth comers fully curled up. An angry face is represented as hav-
ing the eyebrows fully depressed and flattened and the mouth comers fully
curled down. Of course, there are other sources of information described in
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the prototypes, but these do not require our atiention because they should
not be mfluenced systematically by the two independent variables.

Feature integration consists of amultiplicative combination of the feature
values supporting a given alternative. Thus, support for each altemative
1s:

S(H) = b;m;
S(A) =1 - b)) —m))

The probability of an H respon-se is then:

By N

P(H|B:M;) = 20

S(H) -+ S(A)

where P(H|B; M;) is the predicted choice given stimujus B; and M;.

As n the case of bimodal speech, the FLMP requires 10 free parameters
for the 5 levels of BD and the 5 levels of MD. These [0 parameters are
used to calculate the percentage correct identification in all 35 conditions.
In the two-choice identification task, the FLMP's RMSDs for mndividual
participants ranged between .047 to .128 with an average RMSD of .082.
As can be seen in the figure, the FLMP gives a good account of the results.
When both the brow and the mouth are deflected upward, the face is per-
ceived to be happy. The reader might have also noticed that only half of the
American football is present in the factorial part of the desi gn. This simply
means that the mouth variable did not give enough support for happy to
dominate the judgments at the right side of the factonal plots. Thus, the
brow variable did not provide unambiguous support for the happy emotion.
The half of a football is consistent with the asymmetry of the parameter
values. Our justification for interpreting the parameter values is based on
the use of an expanded factorial design (Massaro, 1998). The average pa-
rameter values for the brow variable were 046, .349, 71 1,.788, and .804
as this vanable was changed from angry to happy. The analogous values
for the mouth variable were .051, .107, 479, .823, and .881. In both cases,
the parameter values are more extreme at the angry than at the happy end of
the continnurn. In this case, a downward deflection of the brow will carry
more nfluence than the upward deflection of the mouth, and analogously
for the reverse pairing.

Reaction times (RTs) of the identification judgments were also analyzed.
The RTs of the identification judgments can be used to test the FLMP’s
prediction that RT should increase to the extent the facial information is
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CORRELATION
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FIG. 8.4. Reaction times {(RT) averaged across all panicipants and
plottied as a funclion of ambiguily (A given by Equaiion 7) for
each of ihe 35 condilions of the expanded (actorial design {l[rom
ENison & Massaro., 1997, Experimernt 1).

ambiguous. Ambiguity 1s defined as the extent to which the probability of
a judgment, in this case P(Happy), approaches 0.5.

A =1-2(10.5 — P(Happy))) 0

Thus, ambiguity varies between 0.0 when P(Happy) is 0 or 1, and
1.0 when P(Happy) is 0.5. An RT averaged across all participants was
computed for each of the 35 stimulus conditions and correlated with the
A values computed from the average results of the identification task.
Figure 8.4 shows the strong positive (.83) correlation between this measure
of ambiguity and RT.

Ambiguity predicts RT for both the bimodal and unimodal conditions.
For the unimodal condition when a half-face is made more ambiguous, then
its identification RT increases. For the factonial conditions, RTs appear to
increase to the extent the two half-faces are both ambiguous or when they
conflict with one another (e.g., a *happy” brow and an “angry” mouth,
which creates an ambiguous stimulus).

Gtven this simple relation between identification judgments and RTs, the
preceding ambiguity equation could be incorporated into the formulation
of the FLMP so that the FLMP could predict RTs about as well as iden-
tifications. This would not require the use of identification judgments for
P(Happy} as this lerm could be replaced by P{H|B; M) shown previously
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and m Equation 4. Thus, the assumptions of the FLMP could potentially
be shown to hold for RT data as well as identification judgments.

Rating Judgmenis

Rating judgments also provide a valuable dependent measure of pattern
recognition. Eilison and Massaro (1997) also obtained rating judgments.
The procedure was identical to the identification task except that the 22
participants received instructions to rate the emotion on a scale from 1
to 9. Figure 8.5 shows the ratings averaged across the participants, along
with the predictions of the FLMP. The independent variables influenced
performance in the same manner as in the two-choice task.

RATING - FLMP PREDICTIDNS

RATING

0.2

ANGRY

] | -1 I I i 1 I I ] I ] 1
ANGRY HAPPY ANGRY HAPPY ANGRY HAPPY

BROW MOUTH MOUTH

FIG. 8.5. Predicted (lines) and observed (points) rating of happy
Jjudgments as a function of 1he brow and mouth conditions. The
lelt panel shows performance for Just the upper half of the face
and the right panel for just the lower halfl. The middle panel gives
performance for 1he faciorial combination of the rwo halves. Pre-
dictions are for the FLMP. The circled points ilustrate the super-
additivity predicied by the FLMP (from Ellison & Massaro, 1997,
Experiment 2).
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Although we show just the average resulls, the ratings for individual
participants follow the predictions of the FLMP. We have circled 6 points in
Fig. 8.5 to illustrate that the superadditivity predicted by the FLMP holds for
rating judgments as well as for identification judgments. We circled poinls
that supported the same alternative. As can be seen n the figure, the rating
judgment given the two sources of information combined is more extreme
than the judgment given either one of these sources presented alone. These
results are strong evidence against a WTAV or SCM in which the rating for
two sources of information cannot be more extreme than the rating for either
source presented alone. Consistent with this observation, the model tests
for the rating judgments gave the saméigpnclusions as for the identification
Judgments. The RMSD for the FLMP fit to average rating data was .047
compared to an RMSD of .076 for the fit of the WTAYV and SCM.

FACE IDENTITY

The recognition and identification of emotional expressions has usuvally
been 1solated in the literature from the processing of facial identity. One
lestable assumption, however, is that the identity of faces is derived from the
features that make them up in the same manner that the expression of a face
is computed from facial features. In other words, the difference between
the two domains may be one of different subsets of features rather than
information processing. Although it 15 necessarily the case that the features
for facial expression differ from those for facial identity, the processing
mvolved in these two domains could be identical. Previous findings of
dissociations between emotion and identity, such as segregated processing
in the brain {(e.g., Sergent, Ohta, MacDonald, & Zuck, 1994), might reflect
only differences in information.

Notwithstanding the large number of faces potentially stored in mem-
ory and the high degree of similarity among faces, a known face is easily
identified in about half a second. Bahrick, Bahrick, and Wiitlinger (1975)
found above 90% recognition of yearbook photos of schoolmates, inde-
pendent of class sizes between 90 and 800, and independent of time from
graduation between 3 months and 35 years. We continue to learn new faces
with ease. People can successfully encode large numbers of new faces from
photographs inspected only briefty (5 sec each) and subsequently pick these
from distracters at recognition rates of over 90% (Carey, 1996).

Besides this enormous capability to learn and remember faces, an-
other stmiking aspect of face processing is its robustness under certain
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manipulations. For example, a face can successfully be identified even
after changes in expression, illumination, or when distorted as in carica-
ture (Ekman, 1973; Rhodes, Brennan, & Carey, 1987; Troje & Biilthoff,
1996}. Research has also confirmed that identification is almost unaffected
by a change of viewpoint {Valentin, Abdi, Edelman, & Posamentier, chap.
11, this volume). Whereas identification performance was unaffected by
moderate transformations from full frontal face to three-fourths view be-
tween presentation and lest {Davies, Ellis, & Shepard,-1978; Patterson &
Baddely, 1977) performance was somewhat decreased when the face was
in profile (Galper & Hochberg, 1971). The best transfer of performance
1s observed between faces taken fﬂ?;gn mirror symmetric views (Troje &
Biilthoff, 1997).

Distinclive Faces

By studying the role of distinctive features we are concemed with informa-
tion in the face and facial representation. Bruce (1988) defined a distinctive
face as one whose visual appearance is relatively unusual compared with the
set of faces under consideration. A great deal of research has shown that dis-
tinctive faces are especially easy to identify. This is trie for the recogmition
of familiar faces (Valentine & Bruce, 1986) and for recognizing previously
presented unfamiliar faces (Light, Kayra-Stuart, & Hollander, 1979). One
explanation of the advantage in memory of distinctive faces is that they are
encoded on distinctive properties or features (Shepard, Gibling, & Ellis,
1991). This interpretation is consistent with the creation of caricatures. A
cartoonist exaggerates the distinclive features of a face while preserving
the typical ones. Valentine (1991) argued that 2 common adaptive mech-
anism may underlie distinctiveness effects in face recognilion (see Busey,
chap. 5, this volume; Valentine, chap. 3, this volume). According to A. W.
Ellis (1992), it is at least theoretically conceivable that at some point in
our evolutionary history selection pressures favored the rapid recognition
of a face as belonging to a member of a group different from one's own.
In monkeys, apes, or early hominids, the mechanisms proposed to under-
lie distinctiveness effects would also lead to the rapid identification of an
individual as belonging to a species, subspecies, or group with different
facal characteristics. Circumstances can be imagined in which that might
have been adaptive.

Usually, organisms do not identify faces but other organisms. 1t is only
reasonable that other features not on the face might contribute to the identifi-
cation. We identify faceless friends over the telephone and an acquainlance:
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even when his face has undergone an extreme change such as the shaving of
a beard. We might also easily identify someone because of her distinctive
hairstyle or walk. On the other hand, features not on the face such as a
hat, headband, or glasses could disrupt face identification. As anecdotally
described by Young and Bruce (1991), Little Red Riding Hood mistook
a wolf for her grandmother. Although she could see that the wolf’s eyes,
nose, and teeth were larger than her grandmother’s, she failed to identify the
wolf because she was influenced by the hat the wolf was wearing, as well
the context of him being in her grandmother’s bed. Research has shown that
children around the age of 6 years confuse faces because of an exclusive
focus on such paraphemalia (Dlamoni& Carey, 1977). More generally,
research in developmental psychobiology has confirmed that the young are
more greatly influenced by salient or intense contextual cues than are adults
{Kraebel, Vizvary, Heron, & Spear, 1998). For prosopagnosic patients who
are unable to identify fammhar faces, paraphemmalia accompanying a face of-
ten are the only means toidentify a face. Successful identification is usually
achieved by relying on clothes or voice (H. D. Ellis & Young, 1989).

As can be seen m our short review, one line of research on face identity
focuses on the features that are used 1n the processing of face identifica-
tion. In terms of our approach of pattern recognition we name this focus
the perspective of imformation. Face identification can be understood as
a pattern recognition sitwration that provides multiple sources of informa-
tion, mchuding distinctive and nondistinctive features of a face, situational
conlext, or other nonfacial features of the organism.

The Role of Experience and Development

The influence of experience on information or on modes of processing can
be studied at least from two perspectives. On the one hand, there is the
perspective that focuses on the comparison between the processing modes
in domains differing in the amount of experience (e.g., comparing face
processing to the processing of nonface objects, see Diamond & Carey,
1986; Tanaka & Gauthier, 1997). On the other hand, there is the equally
important perspective of perceptual development that examines the influ-
ence of increasing age. In general, perceptual development brings about
a gain in experience and percepiual leamning. In what foHows, we explain
this perspective in greater detail.

Peirceptual development research has been dominated by the long-
standing idea of a developmental shift from holistic modes of process-
ing in young children (around age 4-7) to analytic modes of processing
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in older children and adults (Kemler Nelson, 1989; Shepp, 1978; Smith &
Kemler, 1977; Wemer, 1957).% Although this view of developmenta) shift
has been challenged and modified, snbsequent studies did not question
the assumpbion of an adult as an analytic processor, but simply the pro-
posal that children are typically holistic processors. Examining children’s
modes of processing in more detail, one line of research argued that the
diagnosis of holistic processing in children derives from an inatiention to
individual differences. Consistent with our value of analyzing individual
participants, analyzing individual data in the context of commonly used
tasks like the resinicted classification task paradigm or a concepl-leaming
task proved to be very informative. I@as found that children had a strong
bias to use just a single dimension to make their judgments (e.g., Schwarzer,
1997; Thompson, 1994, Ward, Vela, & Hass, 1990; Wilkening & Lange,
1989).

Another line of research explored the nature of perception in preschool
children during the earliest moments of visual processing (Thompson &
Massaro, 1989). The goal was, in contrast to the mentioned restricled clas-
sification or concepl-learning tasks, to investigate perceptual processing
while minimizing deciston processes. The children’s judgments were best
descnibed by the predictions of the FLMP. Like adults, children evaluate
features independently and combine them during an integration operation.
The multiplicative algonrithm described how children integrate the features
better than the additive integration rule. These results question the belief
that children’s processing is mainly holistic.

By analogy to the developmental studies conceming holistic processing
in children, the goal of the following experiments on face perception was
lo investigale in greater detail the putative holistic face processing in adults
(see introduction, this chapter). Can this conclusion about holistic face
processing in adults be maintained even if individual data are analyzed
and methods for examining early feature processing are used? Examining
the processes of face identification in the context of mathematical model
testing, especiatly m the context of the FLMP, can answer this question.

As already noted, if face identification performance can be explained
by the predictions of the FLMP, the underlying processing sharply con-
trasts with holistic processing in termns of a holistic encoding of faces. For
holistic face processing, according to this definition, processing of the com-
plete face cannot be reduced to processing of separated facial parts. If the
FLMP does indeed describe the processes involved in facial identification,

%1t should be noted that this body of research focused exclusively on nonfacial visual stimuli.
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adull face processing could be characterized as analytical in the sense that
separate facial features are taken into account. This conclusion is in line
with the developmental perspective of an adult as an analytic processor.
However, in theory the same conclusion could even be drawn if noninte-
grative models like the SCM fit the observed data. This 1s because the SCM
specifies independent evaluation of single features which is the antithesis
of holistic models. The SCM is a nonintegrative model thal assumes that
only one of multiple inputs is used. In contrast, the FLMP 1s an integra-
tive model that proposes a multiplicative combination of several features.
Thus, examining the fit of the FLMP in comparison to the SCM answers
the question of analytic integrative ofsgpalytic nonintegrative processing.
Additionally, the general question of analytic or holistic processing s ad-
dressed by comparing the fit of the FLMP to a holistic model (HM).

Empirical Studies on Face ldentity

Analogous 1o the studies on facial emotion mentioned earlier, we used the
expanded factorial design to study the processing of face identity. The stim-
ulus faces were generated using a database of three-dimensional head mod-
els from the Max Planck Institute of Biological Cybemetics in Tiiebingen,
Germany.” The head models did not contain dislinctive features such as
glasses, beards, or earrings. The hair had been removed digitally, because
the scanning technique had problems digitizing the hair (for details, see
Troje & Biilthoff, 1996). The basis of the faces used in our experiments
was one synthetic face, namely the average face of the database. Unfortu-
nately, Baldi could not be used because this research was initiated outside
of our lab, however, we look forward to using Baldi in future face identity
work.

Constructing the Facial Stimuli

Because in theory a face provides a multitude of dirnensions we varted—
using Rhodes’ (1988) terminology—those first-order facial features that
were typically used by participants. These features characterize (a) the ap-
pearance of the eyes and eyebrows, and (b) the mouth of the faces. Thus,
as i the experiments on facial emotion, we varied one featire (eyes) m
the upper part of the synthetic face and one feature (mouth) in the lower
part of this face and, again, could vary the upper and lower part of the face

7We thank Nikolaus Troje for constructing and providing the faces.
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independently of one another. Using the method of the correspondence-
based representation of faces developed by Vetter and Troje (1997)—which
allowed for the construction of continua along facial features—we created
5 levels for both the upper and lower part of the face. The upper face con-
ditions comprised variations of the eyes and eyebrows as well as varations
of the height of the forehead. On the other hand, the lower face conditions
consisted of variations of the mouth and chin. Combining the 5 levels of the
upper face conditions and the 5 levels of the lower face conditions using the
expanded factorial design (5 x 5 plus the 10 half-face conditions presentin g
the upper face and lower face alone) resulted in 35 stimulus faces.

To use the 35 faces in the comex[eia face identification lask we defined
two prototypical faces. These faces contained the extreme levels on both
features, eyes and mouth. One prototype had a long forehead, narrow eye-
brows, and a wide mouth (prototype with Level 1 for the eyes and Level 5
for the mouth) and the contrasting prototype had a short forehead, wider
eyebrows, and a small mouth (prototype with Level 5 for the eyes and Level
1 for the mouth). We named these prototypes Bob (5,1) and John (1.5).

After betng familiarized with the faces of Bob and John, the participants’
task was 1o identify each of the 35 stimulus faces (each was presented 16
times m random order). To minimize the effect of memory, we fastened
pictures of Bob and John beside the response buttons. To make sure that the
participants did not use elaborate problem-solving strategies to give their
sdentification response, we displayed the stimulus faces only for 500 msec
each.

Figure 8.6 (see points) shows the mean probabilities of identifying the
faces as Bob’s face as a funciion of the levels of the mouth and eyes
variables. The left panel shows the identification for just the Jower half of
the face and the right panel for just the upper half. As can be seen, the
steeper curve for the eyes (upper) variable illustrates that it was somewhat
more infleential than the mouth (lower) variable. However, both half-face
conditions were effective in changing the identification from Bob to John.
In the whole-face conditions, people’s identification was mostly influenced
by the upper part of the face. The influence of the mouth was much less
than the influence of the eyes. Thus, the lower part of the face was very
informative in the half-face conditions, but not in the whole-face condition.

Of primary interest in this analysis is which model could best describe
our results. Because the purpose of our experiments was to examine the
questions of analytic or holistic processing as well as integrative or nonin-
tegrative processing, we compared our results with the fit of the following
models. As described earlier, both the fit of the FLMP and SCM assume
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FIG. 8.6. Predicied {lines) and observed (points) proponion ol
Bob identifications as a function of the upper and lower face ma-
nipulations. The lefi panel shows 1he identification for just 1the
lower half of the face, ithe right panel for just the upper half. and
the middle panel for the whole-face condition.

analytic processing in the context of independent evaluation of the facial at-
tributes. The HM is a nonanalytic tnodel in which dependence 1s assumed
at evaluation. If the FLMP gives a better fit of the data than the SCM,
we can argue Lhat the facial features were in fact integrated. Also, if the
FLMP gives a better fit than the HM we can conclude that informational
dependence occurs after evaluation.

In view of the fact that the influence of the lower part of the face was less
than the upper part, we included a weighted FLMP (wWFLMP) in addition
to the simple FLMP. In the wFLMP the contribution of the lower face
is attenuated by some proportion in the whole-face condition relative to
the half-face condition. This model might be better able to descnbe the
resulis than the simple FLMP because the informativeness of the upper and
lower part of the face is relative when they are presented together. Thus,
informativeness as given by the parameter values of the model changes from
the half-face to whole-face conditions. Because we used the parameters
fit 10 the half-face condition to predict the whole face condition some
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information context bias or weight should be added. This bias was added
by reducing the influence of the upper face parameters for predicting only
the whole-face condition:

i) =wfilu) + (A —w).5 ®

where f(b)is the feature value in whole-face conditions, fi(u) is the feature
value in half-face conditions, and i tracks the level of the feature. The w is
a free parameter indicating the relative amount of influence on trials of the
whole-face conditions. Given the 5 x 5 expanded factorial design and the
sumple FLMP, 10 free paramelters argpecessary to fit our mode! to the 35
conditions: 5 parameters for each level of eye variations and 5 for mouth
variations. In the wFLMP, given the additional weight parameter, 11 free
parameters are necessary.

In our formulation of the SCM, we assume that only one of the i mputs, the
upper or lower part of the face, is functional in whole-face conditions. Thus,
this model predicts that processing is nonintegrative and self-terminates
when information from either part of the face is sensed (Townsend &
Nozawa, 1995). The SCM represents the extreme of the analytic posttion
because it allows for individual elements of the face to be sufficient for
identification even in the presence of other elements or features. The logic
of the SCM is as follows. The information on the upper part of the face
1s selected with some bias probability p, and the lower part information
of the face with bias 1 - p. For a given whole face condition the upper
face information will be identified as Bob with probability u; and the lower
face information with probability ;. Thus the predicted probability of the
identification of Bob given the ith level of the upper face information, U;,
and the jth level of the lower face information, L ;, is

P(Bob | U;L;) = pu; + (1 — p)i; )

This equation for the SCM predicts the probability of identifying Bob
for each of the 35 conditions in our expanded factorial experiment. Because
the 35 equations have 5 different values of u; and 5 different values of I;
and we also do not know the value of p in the whole face conditions, 11
free parameters are necessary: the value of p, the 5 u, values, and the 5 l;
values.

Our primpary assumption in creating the HM was that the subjective value
of facjal attributes is interactive at the lowest levels of processin g- In other
words, a nonanalytic model cannot allow for independence at the evaluation
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stage. This leads us 1o our secondary assumption, which is how we define
dependence at evaluation. 1t is reasonable that as one feature becomes more
salient it will influence the subjective value of the olther feature to a greater
extent. This can be captured quantitatively by a multiplicative rule:

C,'j - u,-l_,-

where ¢;; is the feature resulting from the integration of upper u; and lower
I, parts of the face. For the HM we also assume that integration and decision
processes are the same as the FLMP. Thus, the probabiliy of a Bob response
15 .
Y

P(BOb I U,'Lj) e

Cij
e (10)
cij + (1 —¢ij)

The results confirmed our expectations that the wFLMP is better able
1o describe the resulls than the simple FLMP. In comparison to the sim-
ple FLMP, the wFLMP yielded the best fit 1o observed data. Whereas
the RMSDs of the wFLMP ranged between 0293 and .0895 with an aver-
age of .0611, the RSMDs of the simple FLMP were significantly bigher,
0548 10 .1257, with an average of .0807. The ht of the wFL.MP model was
also better than the SCM. The RMSDs of the SCM ranged from .0293 10
0998, with an average .0737. Finally, the HM fit the observed data worst
of all, with RMSDs between .1326 and .2700 and an average of .1887.

Thus, the better fit of the wFLLMP and FLMP lends support to the view
that face processing, even for face identification, is analytic at evaluation
but requires integration before an identification decision is made. Further,
these results support the assumptions of the FLMP that independent fa-
cial features are multiplicatively combined and that decision is determined
by the relative support of all altematives. Unfortunately, we cannot claim
to have falsified holistic encoding due to the many assumptions used in
constructing the HM. Given the particularly poor fit of the HM, however,
theories of holistic encoding must be questioned.

Given these results, the question arises of why face identification was
more influenced by the eyes than by the mouth. Are these findings only
observable in the context of identifying faces with very short presentation
times that possibly induce an incomplete visual exploration of the whole
face? Oris it just the case that the vanations of the eyes are more informative
than the mouth variations? As noted, the variations of the eyes also incleded
variations of the eyebrows and the forehead, whereas the vanations of the
mouth consisted only of width variations. To answer this question, we
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FIG. 8.7. predicied {lines} and observed {pointsy proportion of
Bob identificanions as a function of the upper and lower face ma-
nipulations for ihe increased presentalion ime of 1,000 msec. The
left panel shows the identification for jusi 1he upper hall of the face,
the right panel (or just the lower half, and the middie panel for the
whole-face condilion.

increased the presentation time of the faces to 1,000 msec in a second
expeniment. The results showed that again—although to a weaker degree—
the Iower part of the face was less influential than the upper part of the face in
the whole-face condition (see Fig. 8.7). Thus incomplete visual exploration
does not seem to be the reason for the main influence of the eyes m face
identification. Rather, the larger influence of the eyes could be due to the
fact that the eye variations are more infornmalive than the variations of
the mouth. Possibly, the fact that more information changed in the upper
part of the face makes it easier 10 discriminate the variations of the eyes
than those of the mouth. Participants will usnally be more influenced by
features that are easy to discriminale than by features that are more difficult
to discriminate (Gamer & Felfoldy, 1970).

Moreover, the model fits replicated the first results in that the wFLMP
showed a betler description of the data than the simple FLMP. RMSDs
for the wFLMP ranged between .0353 to .1246 with an average of .0667,
whereas the simple FLMP RMSDs ranged from .0381 10 .1498 with an
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average of .0891. Further, the FLMP and wFLMP gave a better fit to the
data than the SCM and HM. SCM RMSDs ranged from .0511 to .1601 with
an average of 0960, and the HM RMSDs ranged from .0859 10 2221 with
an average of .1636. The good fit of both of the FLMPs and the poor fit
of the SCM and HM agrees with the previously mentioned results in that
analytic processing as well as the multiplicative information integration is
central in face processing.

In sum, our studies proved successful in addressing the question of how
facial features are evaluated and inlegrated to achieve the identification of
faces. Despite the stronger influence of the eyes, both features, eyes and
mouth, were effective in changing thg, identification from John to Bob.
These processes were well described by the biased wFLMP and FLMP
relative to the poorer description of the HM and the SCM. Given that the
good fit of the FLMP challenges the issue of holistic face processing 1n
terms of holistic encoding, our results on face processing are in agreement
with the general proposal of an adult as an analylic processor. Beyond
that, our results underscore that the separated facial features were not pro-
cessed in isolation but were mtegrated multiplicatively in the process of
face identificaion.

FACIAL SPEECH

Speech perception has long been dominated by the study of how individ-
vals hear sounds and interpret this information as language. Focusing on
the auditory input, however, little attention has been given to the visible
nature of speech in face-to-face communication. The human face is a rich
source of information for a large variety of tasks. Faces not only convey
person identity but also give cues to gender, emotional states, direction
of attention as well as speech. It is common to associate visible speech
perception or lipreading as it is sometimes only leamed by those with hear-
ing impairments. Of course, research does show that visible speech is a
useful source of information for the hearing-tmpaired (Massaro & Cohen,
1999; Walden, Prosek, Montgomery, Scherr, & Jones, 1977). However, re-
search also indicates that untrained normal hearing individuals use visible
speech to recognize words (Massaro, Cohen, & Gesi, 1993), consonants
(C. S. Campbell & Massaro, 1997), and vowels (Jackson, Montgomery, &
Binnie, 1976; Montgomery & Jackson, 1983). In fact, the use of visible
speech cues is 50 natural and automatic for normal hearing individuals that
it is difficult to ignore. The McGurk effect shows that visible speech that
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conflicts with auditory information can still influence perceptual judgments
(McGurk & MacDonald, 1976). For example, combining the visual sen-
tence My gag kok me koo grive with the auditory sentence My bab pop me
poo brive gives the impression that the speaker is sayin g My dad taught me
1o drive (Massaro, 1987b).

Information in Speechreading

One of the most obvious sources of information for visible speech per-
ception is the mouth of the speaker. Early views of speech training for
the deaf proposed that altention si;l_?‘l_l]d be focused exclusively on the
lips. Thus, visible speech perception came to be called lipreading. In fact
Summerfield (1979) provided some support for this by showing that iden-
tification improved 31% when lips alone were added to distorted audi-
lory speech. Summerfield funther proposed that the lips could be analyzed
into three functional features: lip occlusion, horizontal lip extension, and
oral area. However, additional work has shown that features functional m
visible speech perception come from areas other than the lips. Such fea-
tures nclude the jaw bone and skin (Benoit, Guiard-Marigny, Le Goff, &
Adjoudani, 1996), cheek movement and jaw rotation (Erber, 1974), tongue
movement (Bunger, 1952), and teeth visibibty (McGrath, 1985). In our
framework, these observations reflect the multiple sources of information
or features that are available in visible speech perception. Because speech
information comes from various areas of the face, visible speech perception
1s now more appropriately called speechreading.

The Multidimensional Fuzzy 1.ogical Model

The psychophysical study of features has typically taken the approach of
manipulating one feature of interest and holding all other information con-
stant. Changes in correct identification indicate how functional that feature
1s for the experimental task. Although this method has yielded a large
body of empirical data, problems can arise trying to manipulate more com-
plex features such as those in the mouth region of a speaker’s face. As
an altemative, we proposed an extension of the traditional FLMP called
the multidimensional fuzzy logical model (MD-FLMP). The MD-FLMP
allows one to specify the information or features within the formulation
of the model itself {C. S. Campbell & Massaro, 1997). In other words, if
each speech token is a point in a multidimensional space, one can spec-
ify the feature or dimension axes and the vector direction of each token
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TABLE 8.1
Six Visible Features From C. S. Campbell and Massaro (1997)

Viseme
Feature af ol SARa/ ot haf Aal haf Sjal fwal
Duration - - - - + + + + +
Tongue-Tip movement - - + + + + — - _
Lip rounding - - - - - - ¥ F +
Mouth narrowing - - - \&s_ - - - - +
Demal adduction - - 4+ e 3 - - + —
Lower-Lip uck - + - - - ~ - _

(R. N. Shepard, 1980). For example, Table 8.1 shows that seven feature
axes are hypothesized with two directions per axis, + or —. A + indicates
the presence of that feature for a token prototype whereas a - indicates
the absence. As shown in Table 8.1, /tha/ and /da/ both share tongue-tp
movement and thus are hypothesized to be similar. In other words, the
prototypes for /tha/ and /da/ are assumed to be close in multidimensional
space. Exactly how close is not specified. The length or magnitude of the
prototype vector is parameterized usually with one parameter per feature
axis. However, many other possibilities exist. The parameters are itera-
tively adjusted between 0 and 1 until the RMSD between observed and
predicted data has been minimized. By examining the parameter values
we can determine bow each feature axis contributed to the overail fit of
the model. A parameter value near .5 indicales a vector with no mag-
nitude in either direction and thus no real contribution to the fit of the
model. Alternatively, a value rear 1.0 indicates a strong contnbution and
a value near 0 indicates a contribution in the opposite direction as that
hypothesized; the + should have been a —. The observed data to which
the MD-FLMP is fit is the confusion matrix among all speech tokens. It
is assumed that the more confused two tokens are, the more similar or
closer they are in multidimensional space (Luce, 1963). This similanty
can be specified simply by having tokens share one or more features in
common.

The MD-FLMP has many benefits. As mentioned already, the MD-
FLMP does not require any specific manipulation, unlike the traditional
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FLMP, which requires a factorial or expanded factorial design.? Thus, the
MD-FLMP can be used to explore information in more ecologically valid
silualions. Second, data from older experiments can be modeled or remod-
eled for the purposes of meta-analysis or to test some new hypothesis.
Rather than the time-consuming process of redesigning and running ex-
periments, new assumptions can be quickly formulated in the model and
fit to preexisting data. Third, features are hypothesized a priori or before
model fitting. Unlike multidimensional scaling and parallel distributed pro-
cessing models with hidden units, this allows for a stronger understanding
of the connection between the physical dimensions of the stimuli and the
psychological dimensions given by‘ihp feature axes. Finally, it provides a
substantial decrease m the number of free parameters required to fit the
model (Massaro & Cohen, 1999). Whereas the ratio of parameters to data
points is 1 to 3 or 1 to 4 for the traditional FLMP, the ratio is around 1 to
13 for the MD-FLMP-.

Model Formulation

Similar 10 the traditional FLMP, all the informatton processing assumptions
of evaluation, integration, and decision are also given in the formulation
ol the MD-FLMP. Each feature is an independent continuous source of
information that is evaluated against prototypes in memory:

Each feature, f,,is afunction of the value of the feature, F,, in the stimulus.
The result of this function is a fuzzy truth value between 0 and 1. The
support for the response given the stimulus is defined by the similarity of
the stimulus and response in tenms of the number of features they share. In
other words, the support for the response k and stimulus j given feature x
is f if they share this feature and (1 — f) if they do not:

Because S(kj | x) = S(jk | x) then the model makes the same predictions

8The only design requirement of the MD-FLMP is that some measure of psychological similarity
among response alternaltives be obtained. For identification and categorization tasks this measure would
probably be response confusions. However, for same-different tasks this would be the proportion of
“same” responses for all pairs of allemnatives.
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for each cell above and below the diagonal: In other words, this forrulation
assumes that the confusion matnx is symmetrical about the diagonal.’

The support for each response allernative is calculated by combining
the support from each feature. All the sources of information are integrated
according to a multiplicative operation in the MD-FLMP. As with the tradi-
tional FLMP, other integration assumptions may be formulated and tested.
The general form of the equation for the support of a response k given a
stimulus j 1s:

H

Sk 1 ) =[] S&ij | x) (12)

;::

where n is the number of features. L.ooking at Table 8.1, the support for a
/tha/ response given a /da/ stimulus would be a function of the match of
five features and the mismatch of one feature (dental adduction):

S(/tha/ | /daf) = fufi f; fu(1 — f) fi

The symmetrical predictions of the model mean that S(/tha/ | /daf) =
S(/da/ | [tha).

Finally, the decision operations of assessmenlt and response selection is
made according to the RGR. The probability of response given the stimulus
for each cell of the confusion matrix is:

. Stk 1 J)
Pk | j)= 13
&1 2k S 1)) =

where m is the number of response alternatives.

In what follows, we demonstrate the use of the MD-FLMP in three
experiments 10 explore issues of information and information processing in
speechreading. We show how assumptions about information or the features
used in speechreading can be easily formalized and how alternative theories
can be tested and falsified. The MD-FLLMP also allows us to discover how
information changes across experimental manipulations such as stimulus
degradations, natural and synthetic speech, and change of viewpoint.

10 terms of R. N. Shepard's (1980) work, the support S(kj) for alternative k given stimulus j can
be thought of as the distance dy; between category k and j in multidimenstonal space. If we assume
symunetry then the distance from & 1o j is the same as the distance from j tok or dyy; = d (R. N
Shepard, 1980, Equation 2b).
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FIG. 8:8. The synthelic 1alking head. Baldi. from 145 cycles per
face at far left Ihrough 4 cycles per face al far right. Upper panels
show articulation of ~va/. whereas the lower panels show fway.
Taken rom C. 5. Campbelt and Massaro (1997).

Degrading the Face Stimuli

The MD-FLLMP was first used to test a set of six visible facial features hy-
pothesized 10 be functional in speechreading (C. S. Campbell &
Massaro, 1997). In this first experiment we created anine-alternative forced-
choice consonant—viseme categonization experiment with five levels of spa-
tial degradation (see Fig. 8.8 for examples of /va/ and fwa/). The visemes
(foal, /val, Itha/, Ida/, Iral, fal, [zaf, Izha!, and fwa/) presented were repre-
sentative of all nine consonant viseme classes in English (Walden et al.,
1977). Viseme classes are groups of phonemes that are not viswvally distinct.
For example, /ba/ and /paf are in the bilabial viseme class because they are
difficult to distinguish using only visual information. Viseme identification
was used due to the ease of this task by normal hearing, untrained partici-
pants. The results showed that accuracy was fairly resistant to degradation
caused by quantization but confusions among viseme classes increased
as the amount of quantization increased. The MD-FLLMP model was con-
structed with six visible features (see Table 8.1) serving as sources of
mformation to predict these confusions. The model fits showed that the six
visible features predicted the pattern of confusions quite well. Analysis of
parameter values indicated that these features were either highly or moder-
ately functional for visible speech perception. Additionally, a multiplicative
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feature iniegration model fit the observed data better than an additive inte-
gration model. The first experiment replicated and extended these findings
to cover a different range of spatial degradation. Essentially, features func-
tional in speechreading should generalize to new participants and sirnilar
stimuli. To assess lhe adequacy of the six visible features, we decided to
test them against a competing set of features. Similar to C. S. Campbell
and Massaro (1997), participants were presented with all nine consonant
visemes at five levels of spatial quantization and asked to categorize each
token. The only difference was that the levels of spatial quantization were
changed to include 145, 32, 18, 10, and 7 cycles per face. Cycles per face
is the number of pixels across the fdeg at eye level divided by two. The
results replicated the C. S. Campbell and Massaro (1997) experiment as
shown in Fig. 8.9. Spatial quantization had a strong influence reducing
accuracy from 66% in the undegraded condition to 34% at 7 cycles per

SPATIAL OUANTIZATION

1.0
| DATA SOURCE

- _O . EXPERIMENT 1
2 .8 & CAWPBELL & MASSARO (1997
- 1 | CHANCE RESPDNDING
o _
w
—~ 0.6
=z
iy
o .
— 0.4
A )
wr
o -
oC
=]
L]
= 0.2
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145 32 1) 7

OQUANTTZATION (CYCLES/FACE?

F1G. 8.9. Mean percentage comrect viseme identilications across
levels of spatial quantization. The current experiment {Circles) was
measured at 145, 32, 18, 10. and 7 cycles per face. whereas
C. 5. Campbell and Massaro {1997) {triangles) was measuwed at
145 32 16, 8. and 4 cycles per lace. Results are consisient across
expenments,
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FIG. 8.10. Conlfusion matrices for each level of spatial quaniiza-
fion. The area of each circle indicates the mean proporion of
responses given that stimulus. The circles on 1he diagonal with
crosses indicale the proponion of cormrect responses. and 1the off-
diagonal circles show confusions {errors).

face. Figure 8.10 gives the average confusion matrices for each level of
quantization. The diagonal line of circles gives the proportion of correct
responses, and the off-diagonal circles indicate confusions. At 145 cycles
perface, we see that /da/ is confused with /1a/ much of the time, whereas
fwal is seldom confused with any other viseme. As the quantization in-
creases, the proportion of correct responses on the diagonal decreases and
the proportion of confusions increases.

Similar to the model tests of C. S. Campbell and Massaro (1997), three
types of MD-FLMP models (simple, full, and weighted) were fit 1o the
confuston matrices. The five levels of quantization provided five confusion
matrices of data to be predicted. Each matrix had 81 cells (9 stimuli x
9 responses) for a total of 405 data points (see Fig. 8.10). The stmple
model contained only one free parameter for each feature resulting i 6
parameters to predict 405 data points. Because each parameter can assume
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TABLE 82
Weighted Model Parameter Values for Six Visible Features

Visible Features

Parameters Duration  Tongue-Tip  Rounding Narrowing  Adduction  L-Lip Tuck

Feature values 0.706 0.780 0.666 0.999 0800 0.922

B
Spatial Quamizario:ﬁ‘)wlzs per face)

145 32 18 10 7

Weight values 0.997 0949 0.734 0.622 03565

only one value, then the simple model cannot account for any change
m feature information due to degradation. As expecled, the simple mode}
gave a somewhal poor description of the confusion matrices with an average
RMSD of .1324. To account for quantization, a full model was created with
5 parameters for each feature (30 parameters total). These 5 parameters
allowed the feature values to change as a function of quantization. This full
model resulied in a significantly smaller RMSD of .1167.1?

If we assume that a]l six features are degraded the same proportion by
quantization, we can replace the five parameters with a single weighting
parameter. Similar to the weighted FLMP used previously (see Equation 8),
the weight forces the value of the feature parameter to 5 (not informative)
as its values decreases. The weighted model gave an average RMSD =
1251, which was halfway between the simple and full mode] fits. Thus,
1t improved the fit by half the amount possible while saving ncarly two
thirds of the parameters. Table 8.2 shows the average parameter values
for the weighted model. Mouth parrowing and lower-lip tuck appear to
be highly informative, whereas duration and rounding are not quite as
functional. As expected, the weight values decrease as the degradation
Increases.

The models were fit to each participant individually and all tests of significam differences between
models were performed using a 1 iest on these data.
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Overall, the model fits of this experiment replicate those performed in
C. S. Campbeli and Massaro (1997). Additionally, the parameter values
were similar across experiments, showing that the six visible featares gen-
eralize across different levels of degradation and different participants. Qur
model tests thus far have assumed that information is processed according
to the constraints of the FLMP. However, it is possible that information is
integrated additively instead of multiplicatively (Anderson, 1981). To test
this we created simple, full, and weighted versions of a mullidbmensional
additive model of perception (MD-AMP). Consistent with C. S. Campbell
and Massaro (1997), the resuliing model fits show that the MD>-FI. MP pre-
dicted the data much better than the, MD-AMP for all three models. The
MD-AMP had a mean RMSD of .179 for each model compared to much
Jower RMSDs for the MD-FLMP.

Although we have been testing various theories of processing throughout
this chapter, we can also test compeling theories of information using the
MD-FLMP. Miller and Nicely (1955) used a set of five Imguistic features
to descnibe the confusions among English consonants in audible speech.
Table 8.3 gives the assignment of these linguistic features to the nine
visemes. For voicing, nasal, and fricative, each feature can be either present
or notpresent. Place, however, has three levels indicated with 1 for front, 2
for middle, and 3 for back, dicating where the vocal tract is consiricted.
The lmguistic feature set was fit with all three FE.MP models and these
results were compared to the same models fit with the visible feature set.
Results show that the original visible feature set described the data much
better than the linguistic featares. For the full model, the RMSD for the’

TABLE 8.2
Five Linguistic Features From Miller and Nicely (1955)

Viseme

Feature Mol o/ fhal oS fof Aol St Sod Avad

Voicing + + -+ + + + + + +
Nasal - - - - - - - - -
Focative - + + - + - - + -
Place 1 I ] 2 2 2 3 2 I
Duration  + + + + - - - -
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TABLE 83
Full Model Parameter Values for Linguistc Features

Linguistic Fealures

Quantization  Voicing  Nasal  Fricative  Place  Duration

145 0.504  0.500 0.849 0.791 0.765
12 0490 0496 0.734 0.781 0.746
18 0.500  0.500 0.682 0718 0.671
10 0.508  0.500 »:, 0.626 0702 0.682

7 0504 0500 “*0.705 .646 0.553

visible features was .111, whereas for the linguislic features it was .151.
The difference in RMSD:s for the two competing feature sets averaged .034
across simple, full, and weighted models. One reason why the linguistic
features did not do as well probably stems from the fact that these fealures
were created to describe audible speech. It has been shown that the func-
tional features for visible speech are complementary to those of audible
speech (H. W. Campbell, 1974). For example, voicing is an important fea-
ture for audible speech but it has very little value in visible speech. More
importantly, however, the poor performance of the linguistic features is
due to the fact that they fail to differentiate certain visemes. In Table 8.3,
for example, /za/ and /zha/ have the same features as do /va/ and /tha/,
respectively. Table 8.4 shows the average parameter values for each lin-
guistic feature and level of quantization (the full model). The parameter
values for the voicing and nasal features are all about 5. This indicates that
these features were not sseful for predicting the pattem of data given by
participants. This is consistent with previous research showing that voic-
ing and nasality are not very functional in speechreading (Dowell et al.,
1982; Massaro & Cohen, 1999). The remaining features are fairly func-
tional, ranging from .849 to .765. Appropriately, as spatial quantization
increases, these parameter values move toward .5. The features become
less functional because the stimulus is more degraded. These model tests
yielded three main conclusions. First, the six visible features provide a bet-
ter description of speechreading performance than the linguistic features.
Second, the integration of visible speech informaltion is better described by
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the FLMP than the AMP. Third, this modelin g approach is reliable because
stable fits were obtained across slightly different experiments.

Natural versus Synthetic Speech

In the second experiment, we aimed to generalize the psychological valid-
1ty of the six visible features by fiting identifications of a natural speaker
mstead of Baldi. The motivation for this experiment is thal Baldi has been
shown to be somewhat less inteili gible than natural speech (Massaro, 1 998).
Additionally, it has been claimed in the domain of auditory speech per-
ception that synthetic speech tacksyhe informational richness of natural
speech (Nusbaum, Dedina, & Pisoni, 1984). This means that information
m synthetic speech is not merely a degraded version of natural speech, but
provides different cues as well. If synthetic speech is qualitatively different
from natural speech, the patierns of confusions for each stimulus should
differ. Because the feature model used here 1s fit 10 confusion matrices,
any difference in the patterns will then be reflected in the overall fit of the
model. Thus, if natural speech were qualitatively different from synthetic
speech we would expect either a beltter or poorer fit of the six visible fea-
tures to data from a natural speaker. The parameter values for each feature
provide an additional metric by which to evaluate the informativeness of
features fornatural versus synthetic speech. Differences in these values pro-
vide useful information for guiding improvements of our synthetic speech.
Similar to the previous experiment, participants were presented with a)l
nine consonant—vowel visemes at five levels of spatial degradation. The
natural speaker was an adult male taken from laserdisc (Disc ) of the
Johns Hopkins lipreading corpus (Bernstein & Eberhardt, 1986).

Overall, our results show that accuracy was higher for natural speech
than synthetic speech. Accuracy was 76% in the undegraded condition ver-
sus 66% in C. S. Campbell and Massaro (1997) using synthetic speech, a
difference of 10%. Figure 8.11 shows that, similar to the first experiment,
performance from both natural and synthetic speech takes the form of a
positively decelerated function and thus, was robust to the inflaence of spa-
tial quantization. The six visible features were fit 10 the confusion mairices
produced by speechreading the natural speaker. Only the full model and
weighted model were tested because the simple model fails to describe
confusions across levels of quantization. The results of the model tests
confirmed that the fits using synthetic speech and natural speech were all
about the same. For the full model, the mean RMSD of the six visible
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SYNTHETIC VS NATURAL SPEECH
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FIG. 8.11. Mean percentage cerrect identifications across levels
of spatial quantization {or natural (triangles) and synihetic {(circles)
speech.

features was .117 for synthetic speech and .125 for natural speech. For
the weighted model, the mean RMSD was .125 for synthetic and .112 for
natural speech.

Additional model tests were performed to examine whether the infor-
mation processing assumptions of the FLMP hold for natural speech in the
same manner as synthetic speech. Because the FLMP has been fit mainly
to data from synthetic speech, it might be claimed that this model cannot be
generalized to natural speech. Clearly, however, the FLMP adequately fit
the confusions from natural speech for both the full model and the weighted
model. The RMSDs of the AMP were worse than the FLMP at .191 for the
full model and .191 for the weighted model. Thus, consistent with previous
research in bimodal speech perception (Massaro, 1987b) the FLMP gener-
alizes quite well from synthetic to natural speech. Although the model fits
for natural and synthetic speech are nearly the same, analysis of the feature
parameter values can give fine-grained information about the intelligibility
of natural and synthetic speech. Differences in featore parameter values
allow for specific recommendations on improving our synthetic speech.
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TABLE 8.4
Parameter Values for Natral and Synthetic Speech

Visible Features

Stirnuli Durerion  Tongue-Tip  Rounding Narrowing  Adduction  L-Lip Tuck

Natural 0783 0.921 0.858 0818 0947 0.995

Synthetic 0706 0.780 . 0.666 0999 0.800 0.922
g‘,:?\

Table 8.5 shows a comparison of average parameter values for each of the
six visible features. The parameter value for duration was somewhat higher
for natural than for synthetic speech, and the value for longue-tip move-
ment was much higher. This indicates that minor improvements need to be
performed for viseme duration and relatively greater adjustments will be
required for tongue-tip movement. Thus, the tongue 1s an area of ongoing
work for improvements in our synthetic speech (see Cohen, Beskow, &
Massaro, 1998). The rounding feature has a much lower parameter value
for synthetic than natural speech, indicating that rounding also needs to be
mproved. As noted earlier, the viseme class // tends 10 be less inteligi-
ble for synthetic than natural speech (Massaro, 1998). The lips will need
to be adjusted (o produce a more realistic rounding movement. The fea-
tures adduction and lower-lip tuck are also somewhat lower for synthetic
than natural speech. The visibility of the teeth and the lower-lip move-
ment need to be improved. One way to improve adduction would be to
stmply increase the whiteness of the teeth relative 10 the lip coloration.
Of course, this may occur automatically if a light source is positioned to
shine directly into the mouth. Unlike the other features, the parameter value
for narrowing is higher for synthetic than natural speech. Thus, narrowing
shows that synthetic features can actually be made more informative than
features in natural speech. Our model fits indicate that the six visible fea-
tures generalize quite well from synthetic 1o natural speech. The features
do not merely describe the perception of visible speech from synthetic
talking heads but specchreading in normal face-to-face commmunication as
well. The MD-FLMP modeling approach allows us not only to compare
information assumptions across stimuli but to also make more specific
comparisons by examining parameter values. In this sense, the MD-FLMP
acts as a dragnostic lool for evaluating synthetic stimuli,
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Speechreading From Different Views

A great deal of facial perception research has presented faces only in the
frontal view under optimal conditions of lighting and distance. Faces are
viewed from a variely of angles and distances in more typical situations.
Research in face recognition has shown that performance is little influ-
enced by faces rotated 45 degrees i depth (Davies et al., 1978; Hill,
Schyns, & Akamatsu, 1997, Patterson & Baddely, 1977). Somewhal greater
losses in face recognition performance occur when the face is in profile
(Galper & Hochberg, 1971). Highly robust recognition across viewpoints
has also been shown in speechreadigg. Visible vowel recognition is al-
most completely unaffected by head rotitions in depth of 0 and 90 degrees
(Wozmak & Jackson, 1979) and 45 degrees (Neely, 1956). Similar re-
sults were found for speechreading words (Ijsseldijk, 1992) and sentences
(Bauman & Hambrechi, 1995). Visible consonants are also fairly robust
to rotations in depth of 45 degrees but performance tends to decline more
rapidly at 90 degrees (C. S. Campbell & Massaro, 1998).

As speechreading has been shown to be robust across viewpoints, it
is reasonable 1o assume that the features functional in frontal views are
also funclional in profile. Therefore, the six visible {eatures should also
generalize from frontal to profile viewpomts. To test this model, the six
visible features were fit to confusion matrices generated from speechread-
ing Baldi in frontal and profile views at five levels of quantization. The
visemes and levels of quantization were the same as those tested in the
previous experiments.

Relative 1o frontal view, the profile view reduced accuracy by only 16%
in the undistorted condition and 11% at 32 cycles per face. These results
supporl the notion that speechreading is fairly robust to variations in view-
point. Even in profile, performance was resistant to the effects of quan-
tization (Fig. 8.12). Comparing confusion matrices of frontal and profile
views indicates that the pattems of confusions appear to differ widely. In
the frontal view, typical confusions are scen between /za/ and /tha/ as well
as /da/ and /la/. These same confusions are seen in the profile view but they
are not as pronounced. In the profile view, /tha/, /dal, /za/, and f1a/ are often
confused with /va/. Across all levels of quantization, /ra/, /zha/, and fwa/ in
profile are confused with each other. Given these large differences, there
may be qualitative differences in the information used across views. Thus,
the six visible features may not fit the pattern of confusions in the profile
view.
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FRONTAL VS PROFILE VIEWS
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FIG. 8.12. Mean percentage correct idemifications across levels
of spatial quantization for fromial and profile viewpoinis. Circles in-
dicate frontal viewpoin! and diamonds indicate profile viewpaoint.

Confirming this suspicion, it was found that the six visible features
do not fit the data from the profile view as well as the frontal view. The
mean RMSD was .125 (full} and .136 (weighted) for the frontal view and
-145 (full) and .154 (weighted) for the profile view. This suggests that the
features functional in speechreading differ across viewpoints. An analysis
of parameter values shows that tongue-tip movement, dental adduction,
and to a lesser extent mouth narrowing are not as informative in the profile
view. The parameter value for dental adduction is .859 in the frontal view
but drops to .679 in profile. Likewise, the parameter value for tongue-tip
movement is .855 in the frontal view decreasing to .774 in profile. This
makes sense intuitively as well. It is difficult to see the tongue and teeth
inside the mouth from a side view.

If the quality of information actually changes, the six features do not
simply degrade in profile but, rather, new information must be introduced
that was not in the frontal view. To test this we added a feature that js
highly visible from the side but not from the front. Two features that
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are visible im profile include lip protrusion and lip retraction (Bauman &
Hambrecht, 1995). Because lip protrusion is already present in the lip
rounding feature, lip retraction was added as a seventh feature. Several
consonants have lower-lip retraction to restnict the vocal tract toward the
front of the mouth. This includes the labialdentals /va/, the interdentals /tha/,
and to a lesser extent the alveolars /da/, /za/, and /la/. Because lower-lip re-
traction appears similar to the lower-lip tuck, many of the labial consonants
are confused for /va/ when viewed n profile. Tests of the visible feature
set with lip retraction show a significant improvement in fit to the profile
view with mean RMSDs of .136 (full) and .151 (weighted). The tests also
show no changes for the fits 1o the frorgal view. This confirms that changes
in the quality of information occur from frontal to profile views."!

Because the type of mformation used in speechreading changes with
profile view, it may be claimed that information processing also changes.
To test this, MD-FLMP and MD-AMP versions of the seven visible fea-
ture model (including lower-lip retraction) were constructed. Replicating
previous model tests in this chapter, the FLMP provided a better fit to the
frontal view data than the MD-AMP. The mean RMSDs for the MD-FLMP
were .122 (full) and _135 (weighted) versus .185 (full) and .186 (weighted)
for the MD-AMP. The MD-FLLMP also fit better than the MD-AMP in the
profile view. Mean RMDSs for the MD-FLMP were 136 {fulf) and .151
(weighted) versus .180 (full) and .180 (weighted) for the MD-AMP. Con-
sistent with previous findings, information processing remains the same
across percepiual tasks as only the information changes. Overall, these
model tests showed that information in speechreading changes in quantity
and quality as a function of viewpoint. Decreases in quantity were indicated
by reduced speechreading accuracy in profile compared with fromtal views.
Changes in quality were given by the differences in the pattern of confu-
sions for profile and frontal views combined with the poor fit of the six
visible features to the profile data. The possibility that new information is
functional in profile speechreading was tested by adding a seventh feature,
lower-lip retraction, 10 the original six feature set. The significantly better
fit of the seven-feature model confirmed that changes in information qual-
ity occur across viewpoints. Tests for changes in information processing,
however, did not show differences.

Y Similar 10 the first experiment, the weighted model does not fit the data quite as well as the fufl
model for the profile view. The assumption of the weighted model that the effect of quantization is the
same for each feature may not be valid, For example, one feature may be very resistant to quantization,
whereas another succumbs more quickly. Further tests of 1he differential effect of spatial distortion on
individual features are needed.
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Summary

We have shown in three experiments how the MD-FLMP js a productive

framework for exploring facial speech. Using this framework, we were

able (o show that the six visible feature model was superior to 2 competing

seven Imguistic feature model for descnibing the important information in

synthetic and natural speech. However, the six visible features were not

sufficient 10 account for specchreading in profile indicating that the fea-

tures functional in speechreading change across viewpoints. The addition

of the lip retraction feature was an attempt io uncover what new features are
important in profile speechreading., This model was also used to explore

specific patterns in the observed d}fﬁ‘ through an analysis of the param-

eter values. Imitially parameler values were mspecled to find the relative

importance of each feature in speechreading. However, this analysis also

indicated the importance of each feature for synthetic and natural speech.

Finally, these differences were used as a diagnostic and to make recom-

mendations to improve our synthetic speech. It is also possible that this

analysis could be used fo explore what information good speechreaders

use compared to poor speechreaders. This knowledge could then be used

to improve speechreading, traming programs for people with hearing im-

pairments. In addition 1o the tests of information in face perception, tests of
mformation processing showed that the FLMP Pprovides a better description

of speechreading synthetic, natural, and profile speech than an MD-AMP.

Overall, the MD-FL.MP approach is useful because it allows one to easily
formalize and test information and information processing assumptions,
falsify alternative information and infonmation processing theories, and
evaluate changes in information across stimuli and participants.

GENERAL CONCLUSIONS

We have presented in this chapter an information processing framework for
studying face perception and formalized the approach in a mathematical
model called the FLMP. The value of this method was tested in the three
areas of face perception: emotion identification, face identification, and
speechreading. In all three areas, the FI. MP predicted performance better
than several alternative models such as the SCM and the AMP. The success
of the FLMP provides support for the information processing assump-
tions formulated in the model and casts doubts on current positions in the
face perception literature. The CMP, which is mathematically equivalent
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to the SCM, was falsified for both emotion and face identifiction. This is
not surprising given that categorical theories of perception have been sys-
tematically falsified in other areas of perception such as speechreading and
auditory speech recognition (Massaro, 1987b). Because the FLMP assumes
each. source of informaltion is independent, the success of this model also
provides evidence against holistic theories of face perception. If holistic
models were vahd, multiple sources of information should be dependent
(evaluated as a whole). Our formulation and testing of this notion of holism
in the HM, however, showed very poor fits for the face identification ex-
periment. )

Contrary to the modulanty viewpaint, the FLMP seemed to provide
equally good predictions of performance for all three areas of face percep-
tion. This suggests that information processing is the same for these areas
and thus, face perception m general. To account fortask-specific differences
m performance we need only look to the information.

The general modeling approach used in our framework has been shown
1o provide a powerful and flexible method for formulating altemative hy-
potheses. Different information processing assumptions such as additive
integration (AMP) and nonintegration (SCM) were easily formalized and
tested. Competing assumptions aboul the information or features functional
in speechreading were also formalized using a new model catled the MD-
FLMP. Thus, our modeling approach is flexible enough 1o formalize and
lest a wide range of hypotheses concemning facial perception. The only
requirement for formalizing verbal positions is that they meet some mini-
mal standards of clearness and completeness. Once formalized, however,
these hypotheses share a common mathematical language allowing for
better analytic comparisons among them and the possibility of prediction
testing.

In the formulation of the FLMP, information is free to vary through a set
of parameters. This allows one to pullapart issues related to information and
issues related to information processing. Thus, our framework provides an
analytical method for exploring information and a formal method for test-
ing information processing. Throughout this chapter we have shown how
the parameter values give clues 10 information in a given task. For exam-
ple, our study of emotion identification showed that the range of parameter
values was more extreme for the angry than the happy end of the contin-
uum. This indicated that downward deflection of the mouth and brow were
more influential than upward deflection. Additionally, for speechreading,
parameter values for dental adduction and tongue-tip movernent dropped
substantially from frontal to profile views. This indicated that these features
were nol as functional in profile.
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Throughout this chapter we have defined and evaluated an information
processing framework and have shown how this method can advance our
understanding of face perception. Our framework combines three areas (a
formal modeling approach, experimental paradigm, and facial animation
technology) to provide a powerful yet flexible 1ool for inquiry. In the future
we hope 1o see this information processi ng approach combined with models
of encoding, sensory system models, and models of psychological evidence
spaces to provide a unified account of face perception.
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